Avtosfera76.ru

Авто Сфера №76
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Частотный регулятор оборотов двигателя переменного тока

Частотный преобразователь как средство повышения эффективности насосов

Оптимизация процессов и сокращение издержек важны на любом уровне — от крупного предприятия до частного индивидуального хозяйства. Существенно повысить эффективность помогает модернизация насосного оборудования. Включение в систему частотного преобразователя для управления насосами улучшает качество работы и заметно экономит денежные средства на обслуживание и ремонт.

Что такое преобразователь частоты, зачем он нужен

Частотный преобразователь (ПЧ, преобразователь частоты, частотник, частотный регулятор) — современное высокотехнологичное устройство с микропроцессорным управлением, множеством функций и гибкими настройками.

Частотники созданы для качественного контроля скорости и/или момента электродвигателей переменного тока любого назначения, методом согласованного изменения выходной частоты и напряжения. Современные модели способны преобразовывать 50 Гц входящей электросети в необходимые значения. Встроенный инвертор формирует электрическое напряжение заданной формы на обмотках контролируемого электродвигателя. Благодаря этому можно плавно запускать и останавливать двигатель, поддерживать его обороты в нужном диапазоне и оперативно изменять их до нужных значений.

В насосных системах функцию привода выполняет электродвигатель. Поэтому для управления насосом частотник подходит наиболее оптимально. Практически любой электронасос можно дооснастить преобразователем.

Разновидностей ПЧ существует множество. Для управления однофазными и трехфазными электронасосами используют универсальные общепромышленные (например, «Веспер» из линейки EI-7011), которые управляют любыми электродвигателями в широком диапазоне мощностей.

Но выгоднее купить для насосов специализированный частотный преобразователь (например, «Веспер» E5-Р7500. Такие модели ПЧ настроены на выполнение конкретного круга задач, заранее оснащены всем необходимым — переплачивать за лишний функционал не нужно.

Помимо опций и функционала, преобразователь частоты для насоса должен соответствовать мощностным характеристикам управляемого привода. Производители насосов в техническом паспорте указывают, какой преобразователь подойдет к данной модели оборудования. Если таких рекомендаций нет, за помощью по подбору можно обратиться к специалистам компании «Веспер».

Принцип работы преобразователя частоты в тандеме с насосом

Классическая водопроводная насосная система, без ПЧ в контуре, работает по принципу дросселирования. Электродвигатель в этой схеме постоянно работает на максимальных оборотах, а давление в системе регулируется запорной арматурой, управление в лучшем случае осуществляется с помощью реле или же вручную.

Метод имеет ряд существенных недостатков:

  • быстрый износ оборудования;
  • высокий расход электроэнергии;
  • частые аварийные ситуации;
  • низкое качество работы.

Лишь в периоды пикового потребления воды насос работает в режиме максимальной нагрузки. Во всех остальных случаях повышенная мощность оборудования не оправдана. Это учитывается в продвинутой классической схеме, за остановку и старт электронасоса отвечает автоматика (реле). Но так как реле не способно регулировать обороты привода, по сигналу происходит резкий старт на максимальные обороты. Это приводит к гидроударам и перегрузкам в электросети, в результате система быстро изнашивается.

Частотные преобразователи «Веспер» для управления насосами оснащены микропроцессорами с обратной связью. С их помощью можно интеллектуально и бережно регулировать работу оборудования в соответствии с текущими потребностями системы.

Алгоритм работы прост. Когда датчики фиксируют, что уровень давления в трубопроводе либо уровень в резервуаре упал ниже минимума, передается сигнал на преобразователь. Тот плавно запускает электромотор насоса, ударные нагрузки на трубопровод и электросеть исключаются. Подходящее время разгона электродвигателя можно выставить самостоятельно.

Датчики в режиме реального времени передают на преобразователь информацию в процессе разгона насоса. После того, как требуемые величины достигаются, ПЧ прекращает разгон и поддерживает частоту оборотов электромотора. Если уровень снова начнет падать или расти, микропроцессор автоматически отрегулирует давление, изменив производительность насоса. Параллельно частотник выполняет функции защиты (отключает оборудование при сильных колебаниях тока в электросети).

Где используются насосные пч, плюсы и минусы применения

Частотники можно использовать с насосными установками самого различного назначения. Особенно важны частотные преобразователи для насосов систем горячего и холодного водоснабжения, отопления. Результат модернизации конечный потребитель ощутит и оценит сразу же. Водонапорная система с ПЧ в составе функционирует полностью в автономном режиме. При этом качество подачи воды остается неизменным в любое время суток.

Читать еще:  Газон некст какой двигатель выбрать

Масштаб системы не имеет значения. ПЧ способны заметно поднять эффективность промышленных насосных станций и бытовых колодезных и артезианских миниводокачек на один дом.

Преимущества управления насосами с преобразователем частоты:

  • экономия электроэнергии (до 30–40%);
  • исключена ситуация «сухого хода» (без воды в системе);
  • нет температурных скачков при подаче горячей воды;
  • стабильная сила напора;
  • отсутствует избыточное давление в трубах;
  • продлен ресурс электронасоса и трубопровода;
  • снижен уровень шума;
  • можно упростить систему, убрать из схемы гидроаккумулятор и др. ненужные узлы и агрегаты.

Минусы схемы с ПЧ:

  • начальные вложения на покупку прибора;
  • необходим специалист для подключения и настройки оборудования.

Эти недостатки быстро компенсируются за счет удешевления обслуживания. В результате сокращаются издержки на поддержание работоспособности и ремонт, стоимость владения в целом уменьшается, а комфорт заметно повышается.

Какие типы преобразователей существуют?

Бывают преобразователи с управлением по току и с управлением по напряжению. В работе они различаются следующим образом:

  • Преобразователи частоты с управлением по току поддерживают отношение тока к частоте (I/f) всегда постоянным и применяются в верхнем мегаваттном диапазоне.
  • А в нижнем мегаваттном и в киловаттном диапазонах последним словом техники являются преобразователи частоты с управлением по напряжению. Они поддерживают на постоянном уровне отношение напряжения к частоте: То есть если двигатель, рассчитанный на напряжение 230 В и частоту 50 Гц, должен работать с частотой 25 Гц, то и напряжение уменьшается вдвое до 115 В.

Проще говоря, в преобразователе частоты с управлением по напряжению происходит следующее: На входе имеется выпрямитель, который преобразует переменное напряжение электросети в постоянное напряжение. Затем это постоянное напряжение сглаживается и стабилизируется звеном постоянного тока. Далее действующий со стороны двигателя инвертор генерирует переменное напряжение с выходной частотой, необходимой для приводной системы. Получаемое при этом отношение „напряжение/частота“ определяет необходимую частоту вращения двигателя. Задание или расчет необходимой частоты вращения выполняет встроенный блок управления, который соединяет друг с другом все компоненты.

Выбор преобразователя частоты: цена или качество

Причин купить частотный регулятор для электродвигателя может быть много, ведь даже еще некоторое время назад стоимость преобразователя частоты казалась не по карману большинству российских предприятий.

Все серии частотных преобразователей из нашего прайса гарантируют надежную защиту асинхронного электродвигателя, обеспечивая его плавный запуск и торможение, и оптимизируют рабочие режимы в соответствии с текущей нагрузкой, тем самым повышая КПД. Наш каталог включает и такие устройства, которые наряду с возможностью управления посредством встроенного PID регулятора, могут реализовывать и более сложные многоуровневые алгоритмы (например, с обратной связью).

При затруднениях в выборе преобразователя частоты, подходящего для вашего предприятия, вам с радостью помогут наши менеджеры по телефонам 8-800-505-07-56 и +7 495 981-54-56.

В нашей компании вы можете приобрести частотные преобразователи, цена которых позволяет не экономить на качестве!

Способы изменения оборотов двигателя

Регулировка оборотов любого трехфазного электродвигателя, используемого в подъемно-транспортной технике и оборудовании, позволяет добиться требуемых режимов работы точно и плавно, что далеко не всегда возможно, например, за счет механических редукторов. На практике используется семь основных методов коррекции скорости вращения, которые делятся на два ключевых направления:

  1. Изменение скорости магнитного поля в статоре. Достигается за счет частотного регулирования, переключения числа полюсных пар или коррекции напряжения. Следует добавить, что эти методы применимы для электродвигателей с короткозамкнутым ротором;
  2. Изменение величины скольжения. Этот параметр можно откорректировать за счет питающего напряжения, подключения дополнительного сопротивления в электрическую цепь ротора, применения вентильного каскада или двойного питания. Используется для моделей с фазным ротором.

Наиболее востребованными методами являются регулирование напряжения и частоты (за счет применения преобразователей), а также изменение количества полюсных пар (реализуется путем организации дополнительной обмотки с возможностью переключения).

Читать еще:  Что за двигатель умз 42164

Типовая схема подключения ATV21

А1 — частотный регулятор ATV21
Q1 — автоматический выключатель
М1 — двигатель вентилятора
КМ1 — магнитный пускатель
S1 — кнопка ПИТАНИЕ
S2 — кнопка ВЫКЛЮЧЕНИЕ

FLA, FLC и FLB — релейный дискретный выход с одним НЗ и НР контактами с общей точкой. Могут быть использованы как реле неисправности для дистанционного контроля состояния частотного регулятора. Контакты реле меняют свое состояние только при возникновении аварии.
Максимальный рабочий ток:
при активной нагрузке 5 А / 250 В переменного или 30 В постоянного тока
при индуктивной нагрузке 2 А / 250 В переменного или 30 В постоянного тока
RY и RC — НР контакты реле. Замыкаются при работе вентилятора. Могут быть использованы для управления приводом воздушной заслонки.
Максимальный рабочий ток:
при активной нагрузке 5 А / 250 В переменного или 30 В постоянного тока
при индуктивной нагрузке 2 А / 250 В переменного или 30 В постоянного тока
VIB — управляющий сигнал 0 . 10 В при программировании диапазона регулирования от 25 до 50 Гц, сигналу 0 В соответствует частота 25 Гц, а 10 В частота 50 Гц
F и P24 — внешний запуск частотного регулятора. При замыкании вентилятор начинает вращаться с заданной скоростью. Если контакты размыкаются, то вентилятор останавливается.
CC и VIA — управляющий сигнал от внешнего потенциометра ( 4,7 — 15 кОм). при программировании диапазона регулирования от 25 до 50 Гц, сопротивлению ноль Ом соответствует частота 25 Гц, а 15 кОм частота 50 Гц

Рекомендуемая комплектация Schneider Electric. Для S1 возможно использовать кнопку XB7EA31, для S2 — XB7EA42, RC цепочка — LA4-DA2N.

Частотные преобразователи DELTA Electronics

Преобразователи частоты DELTA Electronics или, как их еще называют — частотные преобразователи, предназначены для управления и регулирования скорости вращения электрических двигателей или их момента.

При частотном регулировании электропривода частотный преобразователь Delta Electronics с помощью широтно-импульсной модуляции (ШИМ) формирует на своем выходе такое трехфазное напряжение, при котором электродвигатель вращается с заданной частотой или моментом, а пуск двигателя происходит плавно, без больших пусковых токов и ударов, что, в свою очередь, уменьшает нагрузку на электрическую сеть, электродвигатель, механизмы и увеличивает срок их службы.

Частотно-регулируемые приводы широко используются для управления производительностью (расходом или давлением) насосов, вентиляторов и воздуходувок, в подъемно-транспортном оборудовании и конвейерах, в экструдерах, смесителях, центрифугах, сепараторах, вибраторах, в пескоструйных аппаратах, в металло- и деревообрабатывающем оборудовании, обрабатывающих центрах и прессах, типографском оборудовании. Также частотный привод может применяться в операциях намотки, протяжки, резки и т.п.

В номенклатуру частотных преобразователей Delta Electronics входят:

Помимо преобразователей частоты подразделение промышленной автоматизации Delta Electronics занимается разработкой и производством широкого спектра продукции для автоматизации производственных процессов: сервоприводы, панели оператора, программируемые контроллеры, температурные регуляторы, счетчики, конвертеры интерфейса источники питания, что позволяет конечным пользователям эффективно решить практически любую задачу автоматизации и энергосбережения.

Со списком продукции Delta Electronics, поставляемым нашей компанией, можно ознакомиться в приведённом ниже прайс-листе.

Общепромышленные преобразователи частоты VFD-С

Серия VFD-C использует FOC-векторное управление в качестве базовой технологии управления двигателем, за счет чего достигаются беспрецедентно высокие характеристики привода, такие как пусковой момент, точность поддержания скорости и момента в широком диапазоне регулирования.

Большой эксплуатационный ресурс в совокупности с контролем времени наработки наиболее важных компонентов обеспечивают длительную и надежную эксплуатацию изделия.

  • Режимы управления скоростью, моментом, положением.
  • Модульный дизайн с большим количеством плат расширения.
  • Встроенный ПЛК с LD-программированием и часы реального времени.
  • Модели с двумя наборами номинальных данных (для нормального/тяжелого рабочего цикла).
  • Управление/ограничение момента в 4-х квадрантах.
  • Управление стандартными асинхронными двигателями и синхронными сервомоторами в разомкнутом и в замкнутом контуре скорости.
  • Стартовый момент: до 150% на 0.5Гц (без обратной связи); до 150% на 0Гц (с энкодером).
  • Стабильное управления скоростью на низких частотах, до 200% момента на нулевой скорости в режиме FOC+PG.
  • Помимо традиционного ПИ-регулятора в контуре скорости, в VFD-C используется PDFF-управление, которое устраняет перерегулирование и улучшает отклик системы.
  • Функция безопасной остановки двигателя в соответствие со стандартами EN954-1, EN60204-1 и IEC61508 для предотвращения травмирования персонала от случайного запуска.
  • Функция синхронизации угловых положений вала нескольких приводов.
  • Встроенные CANOpen и Modbus, опциональные PROFIBUS-DP, DeviceNet, MODBUS TCP и Ethernet/IP интерфейсы.
  • Встроенный тормозной ключ (в моделях до 30кВт включительно).
  • Встроенный дроссель постоянного тока (в моделях от 37кВт).
  • Встроенный RFI-фильтр.
  • Съемный цифровой пульт управления с текстовым ЖК-дисплеем.
  • Платы расширения входов/выходов и для подключения энкодера.
  • Быстросъемный вентилятор.
Читать еще:  Двигатель 1zz трясет на холостых

Преобразователи частоты для насосов и вентиляторов VFD-СP

Встроенные возможности серии VFD-CP многодвигательного управления, циклического управления по времени и одновременного управления 8-ю насосами улучшают эффективность использования оборудования, выравнивают моторесурс насосов и экономят электроэнергию. Динамическое управление давлением/потоком воздуха позволяет снизить затраты на оборудование для конечного пользователя.

Поступление преобразователей Danfoss и ProFlex

Для чего нужен частотный преобразователь?

Этот вопрос задают множество людей, которым впервые понадобилось подключить трехфазный двигатель насоса или вентилятора. Конечно, любой электродвигатель можно напрямую подключить к сети переменного тока через соответствующую защитную аппаратуру (моторный автоматический выключатель или контактор с тепловым реле).

Рассмотрим процессы, происходящие в электродвигателе в момент прямого пуска с помощью автоматического выключателя или кнопки включения контактора на примере обычного трехфазного асинхронного двигателя.

На статорные обмотки электродвигателя подается переменное напряжение, которое генерирует соответствующее электромагнитное поле этих обмоток. Это поле, направленное в сторону ротора, в свою очередь заставляет генерироваться электрический ток в короткозамкнутых витках ротора. Затем ток в обмотках ротора генерирует ответное магнитное поле, которое и приводит к движению ротора относительно статора. Все эти процессы, возникающие в момент пуска, называются процессом намагничивания статора и ротора.

Трехфазный электродвигатель сам по себе не нужен: на его валу обязательно присутствует нагрузка (самая простая — в виде лопастей вентилятора). В ситуации с нагруженным конвейером всё сложнее. Тем не менее, у этой нагрузки есть момент инерции – момент, который необходимо преодолеть двигателю для запуска вращения вала. Таким образом, все эти электромагнитные и механические силы в момент пуска напрямую соотносятся с обычным пусковым током двигателя. Как несложно догадаться, этот ток будет в несколько раз (2-7) больше номинального тока двигателя, который получится в установившемся режиме работы.

Зачем нужно регулировать скорость?

Заданное в паспортной табличке число оборотов двигателя на 1 минуту не всегда устраивает потребителя. Иногда скорость механизма хочется уменьшить, а давление в трубе наоборот поднять. Возникает потребность в изменении частоты вращения вала электродвигателя. Как видно из формулы выше, наиболее простой способ изменения частоты вращения вала электродвигателя –изменить частоту переменного тока f.

Зачем нужно изменять напряжение?

Дело в том, что для поддержания определенного магнитного поля в обмотках статора требуется изменять не только частоту, но и напряжение. Получается, что частота должна соответствовать определенному напряжению. Этот называется законом скалярного управления U/f (V/f), где U или V — напряжение.

Также существует закон векторного регулирования. Векторное регулирование используется для оборудования, где требуется поддерживать необходимый крутящий момент на валу при низких скоростях электродвигателя, высокое быстродействие и точность регулирования частоты вращения. Векторное управление представляет собой математический аппарат в «мозге» частотного преобразователя, который позволяет точно определять угол поворота ротора по токам фаз двигателя.

Использование частотника позволяет убрать большой пусковой ток, достигая таким образом значительного экономического эффекта при частых пусках и остановках электродвигателя.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector