Avtosfera76.ru

Авто Сфера №76
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что показывает кпд тепловых двигателей

Тепловые двигатели. КПД тепловых двигателей

Презентация на тему Тепловые двигатели. КПД тепловых двигателей к уроку по физике

  • Похожие публикации
  • Поделиться
  • Код вставки Добавить в избранное —>
  • Комментарии —>

Поделиться
Читать
Обзор
Вставить эту публикацию

Презентация по слайдам:

ТЕПЛОВЫЕ ДВИГАТЕЛИ. КПД ТЕПЛОВЫХ ДВИГАТЕЛЕЙ

Истина – это то, что выдерживает проверку опытом. А. Эйнштейн

Задачи урока: Образовательная: Ознакомить учащихся с устройством и принципом действия паровой турбины; Познакомить с формулой расчета КПД тепловых двигателей. 2. Воспитательная: Рассмотреть области применения тепловых двигателей и условия их эксплуатации. 3. Развивающая: Формировать навыки логического мышления, умение обосновывать свои высказывания, делать выводы.

План урока: Актуализация знаний. Изучение нового материала. Решение задач. Итоги урока. Домашнее задание.

Что общего у автобуса и самолета, у автомобиля и ракеты?

Вывод: Общим для них является двигатель и самый распространенный – тот, что работает за счет тепла, преобразуя тепловую энергию в механическую.

Тепловой двигатель Смотри учебник физики под редакцией А. В. Перышкина стр. 52 Тепловыми двигателями называют машины, в которых внутренняя энергия топлива превращается в механическую.

Мир «огненных машин» История изобретения паровых машин. История изобретения турбин. Паровозы Стефенсона и Черепановых. Достижения науки и техники в строительстве паровых турбин. Использование энергии Солнца на Земле.

История изобретения паровых машин Первым механическим двигателем, нашедшим практическое применение, была паровая машина. Вначале она использовалась в заводском производстве, а затем ее стали устанавливать на паровозах, пароходах, автомобилях и тракторах.

Паровая машина Дэни Папена В 1698 году он построил паровую машину, используя пороховой двигатель, заменив порох водой.

Томас Ньюкомен и его паровая машина Пар из котла поступал в основание цилиндра и поднимал поршень вверх. При впрыскивании в цилиндр холодной воды пар конденсировался и под воздействием атмосферного давления поршень опускался вниз. После этого цикл повторялся. Машина Ньюкомена оказалась на редкость удачной и использовалась по всей Европе более 50 лет.

Джеймс Уатт В 1782 году Уатт создал первую универсальную паровую машину двойного действия. Пар поступал в цилиндр попеременно то с одной стороны поршня, то с другой. Поршень совершал и рабочий и обратный ход с помощью пара, чего не было в прежних машинах. Он использовал тяжелый маховик, центробежный регулятор скорости, дисковый клапан и манометр для измерения давления пара. Паровая машина Уатта стала изобретением века, положившем начало к промышленной революции.

История изобретения турбин В основе действия паровой турбины лежат два принципа создания усилия на роторе, известные с давних времен, реактивный и активный. В машине Бранке, построенной в 1629 году, струя пара приводила в движение колесо, напоминающее колесо водяной мельницы.

Паровая турбина Лаваля представляет собой колесо с лопатками. Пар под большим давлением вырывается из трубы (сопла), давит на лопатки и раскручивает колесо.

Паровая турбина Парсонса Парсонс соединил паровую турбину с генератором электрической энергии. С помощью турбины стало возможно вырабатывать электричество, и это повысило интерес общества к тепловым турбинам. В результате 15-летних изысканий он создал наиболее совершенную по тем временам реактивную турбину.

Читать еще:  Хендай портер стук в двигателе

Первое судно с паротурбинным двигателем – «Турбиния», — построенное Парсонсом в 1894 году развивало скорость около 59 км/час. С 1900 года турбины начали устанавливать на миноносцах, а после 1906 года все большие военные корабли оснащались турбинными двигателями.

Паровозы Стефенсона и Черепановых

Устройство паровоза Паровоз состоит из трёх основных частей: котла, паровой машины и экипажной части. Кроме того, в состав паровоза включается тендер — специальный вагон, где хранятся запасы воды и топлива. Если же вода и топливо хранятся на самом паровозе, то тогда его называют танк-паровозом.

Первый паровоз, двигавшийся по рельсам был создан в 1804 году Тревитиком. Первая железная дорога, открытая в 1825 году между Стоктоном и Дарлингтоном, обслуживалась паровозами Стефенсона. Этот паровоз стал прообразом для всех дальнейших разработок паровозов.

Паровозы Черепановых Первый паровоз был построен Мироном и Ефимом Черепановыми в 1834 году Нижнетагильском заводе. Испытания паровоза начались в августе 1834 года. Имеются сведения о том, что в 1833 году Мирон Черепанов побывал в Великобритании и увидел там паровоз Стефенсона«Ракета».

КПД теплового двигателя Отношение совершенной полезной работы двигателя, к энергии, полученной от нагревателя, называют коэффициентом полезного действия теплового двигателя.

АП – полезная работа, Q1 – количество теплоты, полученное от нагревателя, Q2 – количество теплоты, отданное холодильнику.

КПД тепловых двигателей: Паровая машина 8-12% ДВС 20-40% Паровая турбина 20-40% Дизель 30-36%

Экологические последствия работы тепловых двигателей.

Решение качественных задач: 1. Можно ли огнестрельное оружие отнести к тепловым двигателям?

2. Можно ли человеческий организм отнести к тепловым двигателям?

3. КПД теплового двигателя 45 %. Что означает это число?

Решение задач №1 Определите КПД двигателя трактора, которому для выполнения работы 1,89*107 Дж потребовалось 1,5 кг топлива с удельной теплотой сгорания 4,2*106 Дж/кг.

Дано: АП = 1,89*107 Дж m = 1,5 кг q = 4,2*106 Дж/кг КПД — ? Решение: Ответ: КПД = 30%

Сегодня на уроке: Тепловые двигатели и их классификация. Из истории тепловых машин. КПД тепловых двигателей. Решение задачи на определение КПД.

Сегодня на уроке я : научился мне понравилось хотел бы попробовать сам (придумать задачу, подготовить презентацию на тему: 1. Достижения науки и техники в строительстве паровых турбин. 2. Использование энергии Солнца на Земле.)

Авторы: учитель информатики Татаринова Елена Михайловна 228-512-396 учитель физики Бурьяница Ольга Павловна 228-512-461

Тепловые двигатели. КПД тепловых двигателей. 10-й класс

Разделы: Физика

Класс: 10

Тип урока: Урок изучения нового материала.

Цель урока: Разъяснить принцип действия теплового двигателя.

Образовательные: познакомить учащихся с видами тепловых двигателей, развивать умение определять КПД тепловых двигателей, раскрыть роль и значение ТД в современной цивилизации; обобщить и расширить знания учащихся по экологическим проблемам.

Развивающие: развивать внимание и речь, совершенствовать навыки работы с презентацией.

Воспитательные: воспитывать у учащихся чувство ответственности перед последующими поколениями, в связи с чем, рассмотреть вопрос о влиянии тепловых двигателей на окружающую среду.

Оборудование: компьютеры для учащихся, компьютер учителя, мультимедийный проектор, тесты (в Excel), Физика 7-11 Библиотека электронных наглядных пособий. “Кирилл и Мефодий”.

Читать еще:  Двигатель 1нз датчик давление масла

Ход урока

1. Оргмомент

2. Организация внимания учащихся

Тема нашего урока: “Тепловые двигатели”. (Слайд 1)

Сегодня мы вспомним виды тепловых двигателей, рассмотрим условия их эффективной работы, поговорим о проблемах связанных с их массовым применением. (Слайд 2)

3. Актуализация опорных знаний

Прежде чем перейти к изучению нового материала предлагаю проверить как вы к этому готовы.

– Дайте формулировку первого закона термодинамики. (Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количество теплоты, переданное системе. U=A+Q)

– Может ли газ нагреться или охладиться без теплообмена с окружающей средой? Как это происходит? (При адиабатических процессах.) (Слайд 3)

– Напишите первый закон термодинамики в следующих случаях: а) теплообмен между телами в калориметре; б) нагрев воды на спиртовке; в) нагрев тела при ударе. (а) А=0, Q=0, U=0; б) А=0, U= Q; в) Q=0, U=А)

– На рисунке изображен цикл, совершаемый идеальным газом определенной массы. Изобразить этот цикл на графиках р(Т) и Т(р). На каких участках цикла газ выделяет теплоту и на каких – поглощает?

(На участках 3-4 и 2-3 газ выделяет некоторое количество теплоты, а на участках 1-2 и 4-1 теплота поглощается газом.) (Слайд 4)

4. Изучение нового материала

Все физические явления и законы находят применение в повседневной жизни человека. Запасы внутренней энергии в океанах и земной коре можно считать практически неограниченными. Но располагать этими запасами недостаточно. Необходимо за счет энергии уметь приводить в действие устройства, способные совершать работу. (Слайд 5)

Что является источником энергии? (различные виды топлива, энергия ветра, солнца, приливов и отливов)

Существуют различные типы машин, которые реализуют в своей работе превращение одного вида энергии в другой.

Тепловой двигатель – устройство, превращающее внутреннею энергию топлива в механическую энергию. (Слайд 6)

Рассмотрим устройство и принцип работы теплового двигателя. Тепловая машина работает циклично.

Любая тепловая машина состоит из нагревателя, рабочего тела и холодильника. (Слайд 7)

КПД замкнутого цикла (Слайд 8)

Q1 – количество теплоты полученное от нагревания Q1>Q2

Задача для любителей биологии.

В организме человека насчитывается около 600 мышц. Если бы все мышцы человека напряглись, они вызвали бы усилие, равное приблизительно 25 т. считается, что при нормальных условиях работы человек может развивать мощность 70 – 80 Вт, однако возможна моментальная отдача энергии в таких видах спорта, как толкание ядра или прыжки в высоту. Наблюдения показали, что при прыжках в высоту с одновременным отталкиванием обеими ногами некоторые мужчины развивают в течение 0,1 с среднюю мощность около 3700 Вт, а женщины – 2600 Вт.
КПД мышц человека равен 20%. Что это значит? Какую часть энергии мышцы тратят впустую?

В чем плюсы электромотора

Существует много преимуществ электрических двигателей над двигателями внутреннего сгорания. Вот некоторые из них:

  1. Высокий КПД.
  2. ДВС тратит примерно половину энергии на нагрев мотора. В случае с электрическим двигателем на это затрачивается совсем небольшое количество энергии.
  3. Электромотор гораздо меньше весит и более компактен. Новый двигатель фирмы Yasa Motors весит всего двадцать пять кг, при этом являясь достаточно мощным.
  4. Долгий срок эксплуатации.
  5. Автомобилям с электрическим двигателем не нужна коробка передач.
  6. Экологичность: машина не производит вредных выбросов в атмосферу. Однако это лишь отчасти правдиво, потому что для получения энергии электростанции используют природные ресурсы — газ, уголь, атомные реакции, и это является вредоносным фактором.
Читать еще:  Что залить в двигатель рав4

Обратимые тепловые двигатели Филипса и Карно с реальным газом в качестве рабочего тела

  • Аннотация
  • Об авторе
  • Список литературы
  • Cited By

Аннотация

Ключевые слова

Об авторе

Список литературы

1. Киселѐв В.Г. Парадокс Гиббса и его решение // Известия высших учебных заведений. Проблемы энергетики.2016. № 11-12. С. 129–137.

2. Киселѐв В.Г. Изотермическое расширение идеального газа и химическое сродство // Известия высших учебных заведений. Проблемы энергетики. 2017. Т.19. № 11-12. С. 142–151.

3. Киселѐв В.Г. Тепловые машины Филипса и Карно с точки зрения теории термодинамических потенциалов // Известия высших учебных заведений. Проблемы энергетики. 2018. Т.20. № 9-10. С. 154–165.

4. ЭверетД. Введение в химическую термодинамику: монография. М.: «Издательство иностранной литературы», 1963. 279 с.

5. Пригожин И., Кондепуди Д. Современная термодинамика. От тепловых двигателей до диссипативных структур: монография // М: Мир, 2002. 461 с.

6. Исаев С. И. Курс химической термодинамики. М.: «Машиностроение» 1975. 255 с.

7. Измайлов Н.А. Электрохимия растворов: монография. М.: «Химия», 1976. 488 с.

8. Карапетьянц М.Х. Химическая термодинамика: монография. М.–Л.: «Государственное научно-техническое издательство химической литературы», 1953. 611 с.

9. Антропов Л.И. Теоретическая электрохимия: монография. М.: «Высшая школа», 1975. 568 с.

10. Gibbs J. Willard. The Collected Works. N.Y. London–Toronto: Longmans, Green and Co. 1928. Т. 1. XXVIII. pp.434.

11. Thomson W., Mathematical and Physical Papers. 1882. Article «On the dynamical theory of heat» 1851. V1. pp. 174–232.

12. Ihnatovych V. Study of the possibility of eliminating the Gibbs paradox within the framework of classical thermodynamics. Preprint at http://arxiv.org/pdf/1306.5737. 2014.

13. Ihnatovych V. The logical foundations of Gibbs’ paradox in classical thermodynamics. Preprint at http://arxiv.org/pdf/1305.0742. 2014.

14. Ihnatovych V On the incorrectness of the proof of the Gibbs theorem on the entropy of a mixture of ideal gases, which was given by J. W. Gibbs. Preprint at http://arxiv.org/pdf/1804.08721.2018.

15. Ihnatovych V. Explanation of the Gibbs paradox. URL: https://zenodo.org/record/2908285.

16. Ihnatovych Volodymyr. Explanation of the Gibbs paradox. Zenodo.2019, May 18. http://doi.org/10.5281/zenodo.2908285.

Для цитирования:

Киселёв В.Г. Обратимые тепловые двигатели Филипса и Карно с реальным газом в качестве рабочего тела. Известия высших учебных заведений. ПРОБЛЕМЫ ЭНЕРГЕТИКИ. 2019;21(4):20-32. https://doi.org/10.30724/1998-9903-2019-21-4-20-32

For citation:

Kiselev V.G. Reversible Carnot and Philips heat engines with a real gas as a working body. Power engineering: research, equipment, technology. 2019;21(4):20-32. (In Russ.) https://doi.org/10.30724/1998-9903-2019-21-4-20-32


Контент доступен под лицензией Creative Commons Attribution 4.0 License.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector