Avtosfera76.ru

Авто Сфера №76
40 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое полезная работа двигателя

Коэффициент полезного действия

Средняя оценка: 4.7

Всего получено оценок: 194.

Средняя оценка: 4.7

Всего получено оценок: 194.

В реальной жизни ни одно устройство не может работать без потерь энергии. Их минимизируют различными способами – уменьшением трения, уменьшением тепловых потерь и т.д. Показатель, который характеризует эффективность устройства, называется коэффициентом полезного действия.

Содержание

Не все показатели, характеризующие эффективность энергетических процессов, соответствуют вышеприведённому описанию. Даже если они традиционно или ошибочно называются «коэффициент полезного действия», они могут иметь другие свойства, в частности, превышать 100 %.

КПД котлов

КПД котлов на органическом топливе традиционно рассчитывается по низшей теплоте сгорания; при этом предполагается, что влага продуктов сгорания покидает котёл в виде перегретого пара. В конденсационных котлах эта влага конденсируется, теплота конденсации полезно используется. При расчёте КПД по низшей теплоте сгорания он в итоге может получиться больше единицы. В данном случае корректнее было бы считать его по высшей теплоте сгорания, учитывающей теплоту конденсации пара; однако при этом показатели такого котла трудно сравнивать с данными о других установках.

Тепловые насосы и холодильные машины

Достоинством тепловых насосов как нагревательной техники является возможность иногда получать больше теплоты, чем расходуется энергии на их работу; аналогичным образом холодильная машина может отвести от охлаждаемого конца больше теплоты, чем затрачивается на организацию процесса.

Эффективность таких тепловых машин характеризуют холодильный коэффициент (для холодильных машин) или коэффициент трансформации (для тепловых насосов)

,

где — тепло, отбираемое от холодного конца (в холодильных машинах) или передаваемое к горячему (в тепловых насосах); — затрачиваемая на этот процесс работа (или электроэнергия). Наилучшими показателями производительности для таких машин обладает обратный цикл Карно: в нём холодильный коэффициент

,

где , — температуры горячего и холодного концов, K [1] . Данная величина, очевидно, может быть сколь угодно велика; хотя практически к ней трудно приблизиться, холодильный коэффициент всё же может превосходить единицу. Это не противоречит первому началу термодинамики, поскольку, кроме принимаемой в расчёт энергии A (напр. электрической), в тепло Q идёт и энергия, отбираемая от холодного источника.

Полезная работа теплового двигателя формула. Тепловой двигатель

Работа, совершаемая двигателем, равна:

Впервые этот процесс был рассмотрен французским инженером и ученым Н. Л. С. Карно в 1824 г. в книге «Размышления о движущей силе огня и о машинах, способных развивать эту силу».

Целью исследований Карно было выяснение причин несовершенства тепловых машин того времени (они имели КПД ≤ 5 %) и поиски путей их усовершенствования.

Цикл Карно — самый эффективный из всех возможных. Его КПД максимален.

На рисунке изображены термодинамические процес-сы цикла. В процессе изотермического расширения (1-2) при температуре T 1 , работа совершается за счет измене-ния внутренней энергии нагревателя, т. е. за счет подве-дения к газу количества теплоты Q :

A 12 = Q 1 ,

Охлаждение газа перед сжатием (3-4) происходит при адиабатном расширении (2-3). Изменение внутренней энергии ΔU 23 при адиабатном процессе (Q = 0 ) полностью преобразуется в механическую работу:

A 23 = -ΔU 23 ,

Температура газа в результате адиабатического рас-ширения (2-3) понижается до температуры холодильни-ка T 2

Энциклопедичный YouTube

Математически определение КПД может быть записано в виде:

η = A Q , >,>

где А — полезная работа (энергия), а Q — затраченная энергия.

Если КПД выражается в процентах, то он вычисляется по формуле:

где Q X >> — тепло, отбираемое от холодного конца (в холодильных машинах холодопроизводительность); A

Для тепловых насосов используют термин коэффициент трансформации

где Q Γ > — тепло конденсации, передаваемое теплоносителю; A — затрачиваемая на этот процесс работа (или электроэнергия).

В идеальной машине Q Γ = Q X + A =Q_ >+A> , отсюда для идеальной машины ε Γ = ε X + 1 =varepsilon _ >+1>

Наилучшими показателями производительности для холодильных машин обладает обратный цикл Карно : в нём холодильный коэффициент

ε = T X T Γ − T X > over -T_ >>>> , поскольку, кроме принимаемой в расчёт энергии A (напр., электрической), в тепло Q идёт и энергия, отбираемая от холодного источника.

Читать еще:  Что такое защита двигателя шериф

Тип урока: Урок изучения нового материала.

Цель урока: Разъяснить принцип действия теплового двигателя.

Образовательные: познакомить учащихся с видами тепловых двигателей, развивать умение определять КПД тепловых двигателей, раскрыть роль и значение ТД в современной цивилизации; обобщить и расширить знания учащихся по экологическим проблемам.

Развивающие: развивать внимание и речь, совершенствовать навыки работы с презентацией.

Воспитательные: воспитывать у учащихся чувство ответственности перед последующими поколениями, в связи с чем, рассмотреть вопрос о влиянии тепловых двигателей на окружающую среду.

Оборудование: компьютеры для учащихся, компьютер учителя, мультимедийный проектор, тесты (в Excel), Физика 7-11 Библиотека электронных наглядных пособий. “Кирилл и Мефодий”.

Ход урока

1. Оргмомент

2. Организация внимания учащихся

Тема нашего урока: “Тепловые двигатели”. (Слайд 1)

Сегодня мы вспомним виды тепловых двигателей, рассмотрим условия их эффективной работы, поговорим о проблемах связанных с их массовым применением. (Слайд 2)

3. Актуализация опорных знаний

Прежде чем перейти к изучению нового материала предлагаю проверить как вы к этому готовы.

– Дайте формулировку первого закона термодинамики. (Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количество теплоты, переданное системе. U=A+Q)

– Может ли газ нагреться или охладиться без теплообмена с окружающей средой? Как это происходит? (При адиабатических процессах.) (Слайд 3)

– Напишите первый закон термодинамики в следующих случаях: а) теплообмен между телами в калориметре; б) нагрев воды на спиртовке; в) нагрев тела при ударе. (а) А=0 , Q=0, U=0; б) А=0, U= Q; в) Q=0, U=А)

– На рисунке изображен цикл, совершаемый идеальным газом определенной массы. Изобразить этот цикл на графиках р(Т) и Т(р). На каких участках цикла газ выделяет теплоту и на каких – поглощает?

(На участках 3-4 и 2-3 газ выделяет некоторое количество теплоты, а на участках 1-2 и 4-1 теплота поглощается газом.) (Слайд 4)

4. Изучение нового материала

Все физические явления и законы находят применение в повседневной жизни человека. Запасы внутренней энергии в океанах и земной коре можно считать практически неограниченными. Но располагать этими запасами недостаточно. Необходимо за счет энергии уметь приводить в действие устройства, способные совершать работу. (Слайд 5)

Что является источником энергии? (различные виды топлива, энергия ветра, солнца, приливов и отливов)

Существуют различные типы машин, которые реализуют в своей работе превращение одного вида энергии в другой.

Тепловой двигатель – устройство, превращающее внутреннею энергию топлива в механическую энергию. (Слайд 6)

Рассмотрим устройство и принцип работы теплового двигателя. Тепловая машина работает циклично.

Любая тепловая машина состоит из нагревателя, рабочего тела и холодильника. (Слайд 7)

КПД замкнутого цикла (Слайд 8)

Q 1 – количество теплоты полученное от нагревания Q 1 >Q 2

Q 2 – количество теплоты отданное холодильнику Q 2

Примеры задач на коэффициент полезного действия

Задание. Двигатель подъемного крана имеет мощность $N$. За отрезок времени равный $Delta t$ он поднял груз массой $m$ на высоту $h$. Каким является КПД крана?textit<>

Решение. Полезная работа в рассматриваемой задаче равна работе по подъему тела на высоту $h$ груза массы $m$, это работа по преодолению силы тяжести. Она равна:

Полную работу, которая выполняется при поднятии груза, найдем, используя определение мощности:

Воспользуемся определением коэффициента полезного действия для его нахождения:

Формулу (1.3) преобразуем, используя выражения (1.1) и (1.2):

Ответ. $eta =fraccdot 100%$

Задание. Идеальный газ выполняет цикл Карно, при этом КПД цикла равно $eta $. Какова работа в цикле сжатия газа при постоянной температуре? Работа газа при расширении равна $A_0$

Решение. Коэффициент полезного действия цикла определим как:

Рассмотрим цикл Карно, определим, в каких процессах тепло подводят (это будет $Q$).

Читать еще:  Аварийный режим работы двигателя опель

Так как цикл Карно состоит из двух изотерм и двух адиабат, можно сразу сказать, что в адиабатных процессах (процессы 2-3 и 4-1) теплообмена нет. В изотермическом процессе 1-2 тепло подводят (рис.1 $Q_1$), в изотермическом процессе 3-4 тепло отводят ($Q_2$). Получается, что в выражении (2.1) $Q=Q_1$. Мы знаем, что количество теплоты (первое начало термодинамики), подводимое системе при изотермическом процессе идет полностью на выполнение газом работы, значит:

Газ совершает полезную работу, которую равна:

Количество теплоты, которое отводят в изотермическом процессе 3-4 равно работе сжатия (работа отрицательна) (так как T=const, то $Q_2=-A_<34>$). В результате имеем:

Преобразуем формулу (2.1) учитывая результаты (2.2) — (2.4):

Так как по условию $A_<12>=A_0, $окончательно получаем:

Ответ. $A_<34>=left(eta -1right)A_0$

Другие похожие показатели [ править | править код ]

Не все показатели, характеризующие эффективность энергетических процессов, соответствуют вышеприведённому описанию. Даже если они традиционно или ошибочно называются «коэффициент полезного действия», они могут иметь другие свойства, в частности, превышать 100 %.

КПД котлов [ править | править код ]

КПД котлов на органическом топливе традиционно рассчитывается по низшей теплоте сгорания; при этом предполагается, что влага продуктов сгорания покидает котёл в виде перегретого пара. В конденсационных котлах эта влага конденсируется, теплота конденсации полезно используется. При расчёте КПД по низшей теплоте сгорания он в итоге может получиться больше единицы. В данном случае корректнее было бы считать его по высшей теплоте сгорания, учитывающей теплоту конденсации пара; однако при этом показатели такого котла трудно сравнивать с данными о других установках.

Тепловые насосы и холодильные машины [ править | править код ]

Достоинством тепловых насосов как нагревательной техники является возможность получать больше теплоты, чем расходуется энергии на их работу. Холодильная машина может отвести от охлаждаемого конца больше теплоты, чем затрачивается энергии на организацию процесса.

Эффективность машин характеризует холодильный коэффициент [en]

ε X = Q X / A >=Q_ >/A> ,

где Q X >> — тепло, отбираемое от холодного конца (в холодильных машинах холодопроизводительность); A — затрачиваемая на этот процесс работа (или электроэнергия).

Для тепловых насосов используют термин коэффициент трансформации

ε Γ = Q Γ / A =Q_/A> ,

где Q Γ > — тепло конденсации, передаваемое теплоносителю; A — затрачиваемая на этот процесс работа (или электроэнергия).

В идеальной машине Q Γ = Q X + A =Q_ >+A> , отсюда для идеальной машины ε Γ = ε X + 1 =varepsilon _ >+1>

Наилучшими показателями производительности для холодильных машин обладает обратный цикл Карно: в нём холодильный коэффициент

ε = T X T Γ − T X > over -T_ >>>> ,

где T Γ > , T X >> — температуры горячего и холодного концов, K [2] . Данная величина, очевидно, может быть сколь угодно велика; хотя практически к ней трудно приблизиться, холодильный коэффициент может превосходить единицу. Это не противоречит первому началу термодинамики, поскольку, кроме принимаемой в расчёт энергии A (напр., электрической), в тепло Q идёт и энергия, отбираемая от холодного источника.

Тепловые двигатели

Мы знаем, что совершение над телом работы есть один из способов изменения его внутренней энергии: совершённая работа как бы растворяется в теле, переходя в энергию беспорядочного движения и взаимодействия его частиц.

Рис. 1. Тепловой двигатель

Тепловой двигатель — это устройство, которое, наоборот, извлекает полезную работу из «хаотической» внутренней энергии тела. Изобретение теплового двигателя радикально изменило облик человеческой цивилизации.

Принципиальную схему теплового двигателя можно изобразить следующим образом (рис. 1 ). Давайте разбираться, что означают элементы данной схемы.

Рабочее тело двигателя — это газ. Он расширяется, двигает поршень и совершает тем самым полезную механическую работу.

Но чтобы заставить газ расширяться, преодолевая внешние силы, нужно нагреть его до температуры, которая существенно выше температуры окружающей среды. Для этого газ приводится в контакт с нагревателем — сгорающим топливом.

Читать еще:  Что если феном отогревать двигатель

В процессе сгорания топлива выделяется значительная энергия, часть которой идёт на нагревание газа. Газ получает от нагревателя количество теплоты . Именно за счёт этого тепла двигатель совершает полезную работу .

Это всё понятно. Что такое холодильник и зачем он нужен?

При однократном расширении газа мы можем использовать поступающее тепло максимально эффективно и целиком превратить его в работу. Для этого надо расширять газ изотермически: первый закон термодинамики, как мы знаем, даёт нам в этом случае .

Но однократное расширение никому не нужно. Двигатель должен работать циклически, обеспечивая периодическую повторяемость движений поршня. Следовательно, по окончании расширения газ нужно сжимать, возвращая его в исходное состояние.

В процессе расширения газ совершает некоторую положительную работу . В процессе сжатия над газом совершается положительная работа (а сам газ совершает отрицательную работу ). В итоге полезная работа газа за цикл: .

Разумеется, должно быть 0′ alt=’A>0′ /> , или (иначе никакого смысла в двигателе нет).

Сжимая газ, мы должны совершить меньшую работу, чем совершил газ при расширении.

Как этого достичь? Ответ: сжимать газ под меньшими давлениями, чем были в ходе расширения. Иными словами, на -диаграмме процесс сжатия должен идти ниже процесса расширения, т. е. цикл должен проходиться по часовой стрелке (рис. 2 ).

Рис. 2. Цикл теплового двигателя

Например, в цикле на рисунке работа газа при расширении равна площади криволинейной трапеции . Аналогично, работа газа при сжатии равна площади криволинейной трапеции со знаком минус. В результате работа газа за цикл оказывается положительной и равной площади цикла .

Хорошо, но как заставить газ возвращаться в исходное состояние по более низкой кривой, т. е. через состояния с меньшими давлениями? Вспомним, что при данном объёме давление газа тем меньше, чем ниже температура. Стало быть, при сжатии газ должен проходить состояния с меньшими температурами.

Вот именно для этого и нужен холодильник: чтобы охлаждать газ в процессе сжатия.

Холодильником может служить атмосфера (для двигателей внутреннего сгорания) или охлаждающая проточная вода (для паровых турбин). При охлаждении газ отдаёт холодильнику некоторое количество теплоты .

Суммарное количество теплоты, полученное газом за цикл, оказывается равным . Согласно первому закону термодинамики:

где — изменение внутренней энергии газа за цикл. Оно равно нулю: , так как газ вернулся в исходное состояние (а внутренняя энергия, как мы помним, является функцией состояния). В итоге работа газа за цикл получается равна:

Как видите, : не удаётся полностью превратить в работу поступающее от нагревателя тепло. Часть теплоты приходится отдавать холодильнику — для обеспечения цикличности процесса.

Показателем эффективности превращения энергии сгорающего топлива в механическую работу служит коэффициент полезного действия теплового двигателя.

КПД теплового двигателя — это отношение механической работы к количеству теплоты , поступившему от нагревателя:

С учётом соотношения (1) имеем также

КПД теплового двигателя, как видим, всегда меньше единицы. Например, КПД паровых турбин приблизительно , а КПД двигателей внутреннего сгорания около .

Итоги

Конструкторы постоянно стремятся повысить КПД как дизельного, так и бензинового двигателя. Увеличение количества впускных и выпускных клапанов на один цилиндр, активное применение систем изменения фаз газораспределения, электронное управление топливным впрыском, дроссельной заслонкой и другие решения позволяют существенно повысить коэффициент полезного действия. В большей мере это касается дизельного двигателя.

Благодаря таким особенностям современный дизель способен полностью сжечь насыщенную углеводородами порцию дизтоплива в цилиндре и выдать большой показатель крутящего момента на низких оборотах. Низкие обороты означают меньшие потери на трение и возникающее в результате трения сопротивление. По этой причине дизельный мотор сегодня является одним из наиболее производительных и экономичных типов ДВС, КПД которого зачастую превышает отметку в 50%.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector