Avtosfera76.ru

Авто Сфера №76
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Устройство теплового двигатели и его схема

Термопары: устройство и принцип работы простым языком

Термопарой, или термоэлектрическим преобразователем, называют устройство для измерения температуры, основой работы которого является термоэлектрический эффект.

В бытовых целях используются в различных приборах, в самых простых и технически сложных: от утюгов, паяльников, холодильников до автомобилей и отопительных котлов. Благодаря большому диапазону измеряемых температур (от -250 о С до +2500 о С) широкое применение термопары нашли в промышленности, коммунальном хозяйстве, науке и медицине. Также термоэлектрические преобразователи работают как часть систем автоматики и управления, снимая и передавая данные об изменениях температуры. Такие датчики отличаются надежностью, невысокой стоимостью, необходимой точностью и низкой инертностью.

Работа термопары основана на свойстве изменения термо-ЭДС (термоэлектродвижущей силы) от повышения или уменьшения температуры. Точность показаний зависит от типа конструкции, соблюдения технологических требований, схемы подключения проводников.

Конструкция термоэлектрического преобразователя обусловлена тепловой инерцией и чувствительностью используемых элементов, условиями применения: диапазоном температур, агрессивностью и агрегатным состоянием среды, необходимостью использовать защиту.

Принцип работы термопары

Принцип действия термопары — термоэлектрический эффект, или эффект Зеебека. Явление это было открыто ученым в 1821 году и состоит в следующем:

в замкнутой цепи из двух разнородных проводников возникает электродвижущая сила (термо-ЭДС), если места их соединения, или спаи, поддерживать при разной температуре. Эффект не возникает в случае использования однородных материалов, а также при одинаковых температурах спаев. Величина термоэлектродвижущей силы зависит от материала проводников и разницы температур контактов, направление тока в контуре — от того, температура какого спая выше.

На практике в термопаре используют проводники из разных сплавов, они также называются термоэлектродами. Один спай, «горячий», выполняют сваркой или скручиванием и помещают в среду с измеряемой температурой; другой, «холодный», замыкается на контакты измерительного прибора или соединяется с устройством автоматического управления. В современных сложных термопарах используются цифровые преобразователи сигнала.

Термо-ЭДС возникает за счет разницы потенциалов между соединениями проводников при интенсивном нагреве или охлаждении горячего спая. Напряжение на холодном спае пропорционально зависит от температуры на горячем. При этом температура на холодном должна быть постоянной, иначе возникает большая погрешность измерений. Для высокой точности холодный контакт помещается в специальные камеры, где температура поддерживается на одном уровне.

Применение термопар и их особенности

Область применения термопар огромна, в первую очередь, благодаря широкому измерительному диапазону температур: от сверхнизких до экстремально высоких. Широкое распространение эти устройства получили также из-за стабильности и точности измерений. Их используют в бытовых и промышленных приборах, производственных технологиях для измерения температуры различных устройств, объектов и сред: воздуха, твердых тел, расплавленного металла, жидкостей и газов, вращающихся деталей, тепловых двигателей.

Как датчики температур термоэлектрические преобразователи применяют в автоматизированных системах управления. В газовом оборудовании (котлы, плиты, колонки) с помощью термопар осуществляют термоконтроль. По данным термопары срабатывает аварийное отключение приборов, если превышена допустимая температура.

От назначения термопары зависит ее конструкция и материалы проводников: различные комбинации металлов предназначены для различных сред и диапазонов температур.

Рабочие элементы для защиты от воздействия внешних факторов могут помещаться в колбу, или чехол: например, защитный материал для термопары в газовом котле — нержавеющая или обычная сталь. При температурах до 1000-1100 о С применяют жаростойкие сплавы, при более высоких — фарфор, тугоплавкие сплавы. Для измерений в особых условиях среды, к примеру, при высоком давлении, требуется герметичность термопары.

Если среда измерения не оказывает вредного влияния на проводники, защиту не используют. Бескорпусный вариант с незакрытым местом соединения двух проводников отличается низкой инертностью и практически мгновенным измерением температуры.

В зависимости от количества мест измерения термопары могут быть одноточечные и многоточечные. Соответственно, длина рабочей части термопары колеблется от 120 мм до 20000 мм. Потребность во многих точках измерения (до нескольких десятков) возникает, в частности, в химической и нефтехимической промышленности для тех емкостей, где перерабатываются жидкости (реакторов, баков, колонн фракционирования).

Классификация термопар

Принцип действия термопары основан на возникновении разности потенциалов в проводниках, поэтому металлы термоэлектродов должны отличаться по химическим и физическим характеристикам. Для применения в термопарах используются различные сплавы цветных и благородных металлов.

Благородные металлы позволяют существенно повысить точность измерений, сказывается меньшая термоэлектрическая неоднородность и стойкость к окислению. Они используются для измерений до 1900 о С, при более высоких температурах необходимы специальные жаростойкие сплавы. Неблагородные металлы применяются до 1400 о С.

Все материалы проводников обладают различной плавкостью, стойкостью к окислению, диапазоном рабочих температур. Именно в указанном производителем интервале температур возможна качественная работа устройства и точные данные измерений.

Для классификации групп термопар по российскому ГОСТу используют три кириллические буквы, международная классификация подразумевает обозначение одной буквой латиницы: например, нихросил-нисиловая термопара имеет обозначение ТНН, или N; платинородий-платинородиевая — ТПР, тип В.

Другая классификация термопар учитывает типы спаев, которые могут быть использованы:

  • одноэлементные и двухэлементные;
  • изолированные и соединенные с корпусом;
  • заземленные и незаземленные.

Инерционность термопары снижается при заземлении на корпус, а это увеличивает быстродействие и точность измерений. Также для уменьшения инерционности в некоторых устройствах спай оставляют снаружи защитного корпуса.

Хромель+алюмель ТХА (тип K)

Существует множество типов термопар, хромель-алюмель — одна из самых распространенных.

Состав сплава хромель:

  • 90% никеля
  • 10% хрома

Состав сплава алюмель:

  • 95% никеля
  • 2% алюминия
  • 2% никеля
  • 1% кремния

Возможность работы с линейной характеристикой в пределах температур от -200 о С до +1300 о С, подходит для нейтральных и окислительных сред, имеет невысокую стоимость. В восстановительной среде требуется защитный корпус. Диапазон рабочих температур зависит от диаметра электродов, может применяться при реакторном облучении.

Отличается высокой чувствительностью (примерно 41 мВ/ о С) и регистрирует даже небольшие изменения температуры, очень широко применяется во многих областях.

Недостатки и особенности. Никель имеет магнитные свойства, что вызывает изменение выходного сигнала при температурах 350 о С. В серной среде возможен преждевременный отказ, при определенных низких концентрациях кислорода работа также нарушается.

Железо+константан ТЖК (Тип J)

Надежная и недорогая термопара для промышленности и науки.

Константан обычно состоит из :

Применяется в более узком диапазоне температур по сравнению с хромель-алюмелем: -200 — +1100 о С, при этом выше чувствительность: 50-60 мкВ/ о С.

Хорошо подходит для вакуумной среды, измерения проводятся также в окислительных, восстановительных, нейтральных средах. Температура длительного воздействия — до +750 о С, кратковременного — до +1100 о С.

Нельзя постоянно применять при отрицательных температурах из-за коррозии на металлическом выводе, окислительные среды сокращают срок действия. При высоких положительных температурах негативно влияет сера.

Хромель+копель ТХК (тип L).

Копель изготавливается примерно в таких пропорциях:

  • медь 56%
  • никель 43%
  • марганец 1%.

В основном используется для пирометрических измерений различных сред при рабочих температурах 200-600 о С, в промышленных и лабораторных установках. Максимальный диапазон измеряемых температур: от -250 о С до +1100 о С при кратковременном воздействии.

Одна из самых высокочувствительных термопар — до 80 мкВ/ о С.

Чувствительна к деформации, очень хрупкая.

Преимущества и недостатки термопар

Термопары имеют давнюю историю эксплуатации и широко применяются благодаря следующим преимуществам:

  • Способности работать в агрессивных средах и экстремальных температурах от -250 о С до +2500 о С.
  • Невысокой цены для большинства моделей. Стоимость увеличивается для приборов с благородными металлами, защитными элементами, дополнительными соединениями и разъемами.
  • Проверенной десятилетиями надежности и неприхотливости.
  • Точности измерений. Погрешность составляет до 1-2 о С в стандартных приборах, что по большей части достаточно для промышленных и бытовых нужд. Более высокоточные приборы имеют показатель 0,01 о С.
  • Простой технологии изготовления и обслуживания.

К недостаткам термопар можно отнести:

  • необходимость применения высокочувствительных приборов для снятия результатов измерений;
  • малая величина токов требует экранирующей защиты проводов для уменьшения наводки;
  • ухудшение показателей при длительном использовании в условиях перепадов температур;
  • для точных измерений требуется градуировка каждого прибора на заводе-изготовителе;
  • появление нелинейной зависимости термо-ЭДС от нагревания, если превышаются рабочие ограничения.

В целом, возможные сложности в работе с термопарами хорошо изучены и имеют различные способы решения. Благодаря надежности, точности, широкому рабочему диапазону температур устройства очень распространены. Применение определяется их техническими характеристиками и особенностями, а для некоторых систем термопары — единственно возможный вариант. Существующая классификация, а также многочисленные исследования и опыт эксплуатации дают обширную информацию о различных типах устройств, что облегчает их выбор и использование.

Какой тип термопар выбрать

В промышленном оборудовании термопары используются крайне часто для более точного контроля этапов производства товара. В то время пока вы рассматриваете какую термопару выбрать, рекомендуем заострить свое внимание на следующих характеристиках:

  • Диапазон измерения температур
  • Устойчивость к химическим средам
  • Стойкость к вибрации и механическим воздействиям
  • Совместимость с используемым оборудованием
Читать еще:  Фольксваген поло стук поршней холодного двигателя

Как подобрать тип спая термопары

У термопар имеется три типа спая: изолированный, неизолированный или открытый.

На конце датчика с неизолированным переходом провода термопары прикреплены к стенке датчика с внутренней стороны. Благодаря этому достигается отличная теплопередача снаружи через стенку оболочки к спаю термопары. В изолированном типе спай термопары отделен от стенки оболочки. Время отклика меньше, чем у неизолированного типа, но изолированный обеспечивает изоляцию от электричества.

Термопара в стиле открытого спая выступает из конца оболочки и подвержена воздействию среды которая ее окружает. Этот тип обеспечивает лучшее время отклика, но его можно эксплуатировать только для некоррозионных и негерметичных случаев.

Неизолированный спай используют для замера температур агрессивных сред, или же для областей применения где характерно высокое давление. Спай неизолированной термопары приварен к защитной оболочке, благодаря чему достигается более быстрый отклик, чем при эксплуатации спая изолированного типа.

Изолированный спай отлично себя показывает в измерениях температур в агрессивных средах, где рекомендуется иметь термопару, которая электрически изолирована от оболочки и экранированную ею. Термопара из сварной проволоки физически изолирована от оболочки термопары порошком MgO (оксид магния).

Открытый переход рекомендуется для измерения статических или текущих температур некоррозионных газов, где понадобится быстрое время отклика. Соединение выходит за пределы защитной оболочки из металла, в следствии чего получается более точный и быстрый отклик. Изоляция оболочки герметична в соединительных местах, благодаря чему исключается любое проникновение влаги или газа, которое могло бы привести к ошибкам.

Принцип функционирования ДВС

Агрегаты, где топливо под воздействием химических реакций перегорает и трансформируется в энергию тепла, а далее обеспечивает механическую рабочую силу, называются тепловыми двигателями. К общему названию «ТД» относятся как паровые машины и турбины, так и двигатели внутреннего сгорания, функционирующие на основе поршней, газотрубные и реактивные двигатели, а так же конструктивно совмещённые между собой разноплановые двигатели (турбопоршневые).

Принцип действия ДВС, а именно превращение энергии из химической в тепловую, позволяет применять данную систему на тепловозе. Весь процесс протекает в цилиндре, одновременно со сгоранием топлива. Для преобразования тепла, воздух, попавший в цилиндр, проходит несколько этапов изменения, поддаётся некоторым воздействиям.

Поступивший поток воздуха, под воздействием поршня нагревается, а как результат и сжимается. В это время, к нему через форсунку поступает некоторое количество топлива, по средствам впрыскивания. Внутренняя воздушная среда может нагреваться до 600-650 о С, что больше значений показателей, провоцирующих процесс воспламенения впрыскнутого жидкого топлива. Именно газы, которым присуще высокое давление и такая же температура, приводят поршень в действие при помощи надавливания. Такие газы образовываются после процесса воспламенения и сгорания топлива.

Обеспечение функционирования поршня — процесс, во время которого отдаётся необходимая часть тепла, а отработанные вещества через выпускной клапан выпускаются в атмосферу. Новая воздушная среда сменяет старый воздух и полностью заполняет систему цилиндра. Весь это процесс продолжатся столько, сколько по времени совершаются работы.

Установленные на тепловозах ДВС работающие на основе поршней, обладают рядом достоинств:

  • компактны;
  • обладают min потерями (тепла и гидравлики);
  • max КПД.

Двигатель внутреннего сгорания, установленный в тепловозе, является механизмом, функционирующий по шатунно-кривошипной системе. Комплектация его, кроме шатуна и кривошипа, состоит из поршня и вала. Такое наполнения позволяет преобразовывать движение поршня во вращательное движение вала.

Параметры и наполнение ДВС может быть самым разнообразным, могут различаться скоростью потреблением и передачей энергии, числом встроенных цилиндров, периодичностью вращения валов и иным. Такое разнообразие позволяет удовлетворить различные потребности пользователей.

По способу зажигания топлива различают двигатели низкого и высокого сжатия. Во-первых, зажигание осуществляется принудительно. Во-вторых, при помощи самовоспламенения, и именно такие устанавливаются на тепловозы, ведь отличаются мощностью и своей экономичностью.

На сегодняшний день в разных отраслях используют двигатели внутреннего сгорания двух- и четырёхтактного типов. Один полный оборот коленчатого вала (2 хода поршня) необходимо для обеспечения рабочего цикла у двухтактных двигателей. Два оборота и 4 хода для четырёхтактных, которые в свою очередь обладают min уровнем тепловой напряжённости и расходом топлива.

Двигателя внутреннего сгорания могут различаться между собой по способу смесеобразования:

  • однокамерные (со струйным распыливанием): самые распространённые, ведь обеспечивают минимальный расход при значительных нагрузках. Такие дизели очень требовательны к качеству топлива и конструкции топливной аппаратуры;
  • двухкамерные (вихрекамерные, предкамерные, в поршне с камерой): им присущи значительные тепловые и энергетические потери, поэтому не экономичны, но при этом функционируют при помощи простых насосов и форсунок.

Очень важно выбрать правильный тип дизеля, подходящую форму камеры сжатия, учесть иные моменты, точно предназначенные для предстоящего вида работ и модели техники. Качественный ДВС в первую очередь определяется своей надёжностью, экономичностью, долговечностью и технологическим наполнением.

Дизель-генератор 4Д80Д

Разные части различных моделей маневровых тепловозов могут быть модернизированными несколькими способами. Одним из вариантов усовершенствования грузового тепловоза типа М62У может быть осуществление замены «родных» дизелей на новые дизели модели 4Д80Д. Конструкция новых устройств представляет собой совмещение дизеля и генератора. В данном случае установка двигателя адаптируются к схемам М62У быстро и легко. Организация данного процесса не нуждается во внесении корректив в служебные свойства тепловоза.

Масса дизель-генератор составляет 23 тонны, длина 4635 мм, ширина 1615 мм, высота 3100 мм. Мощность в 1350 кВт и среднюю скорость поршня в 6,75м/с обеспечивают 10 цилиндров.

Встроенный в 4Д80Д коленчатый вал функционирует в двух режимах: на полной мощности и на холостом ходу. В зависимости от чего и зависит частота его вращения. В первом случае коленчатый вал осуществляет 750 оборотов в минуту, во втором, 300 об/мин. Отличается данный агрегат и сравнительно высокими показателями, характеризующими степень нагрузки и наддува, рабочим объемом цилиндра, а также полнотой и своевременностью сгорания топлива.

При установке 4Д80Д, расход топлива уменьшится на 15-20% и будет составлять:

  • 197 г/кВт.ч.: в условиях объекта;
  • 190 г/кВт.ч.: в условиях ISO.

В процессе продуктивного функционирования данные дизеля тепловоза способны прослужить 300000 км, после чего будет необходимо проведение переборки, а после 1500000 км в плановом порядке проводится первый капитальный ремонт. Конструкция 4Д80Д продумана до мелочей, позволяет производить удобное ТО и любой вид ремонтных работ.

Дизель-генератор монтируется на раму, а к ротору генератора подключается коленчатый вал, используется при этом эластичная муфта. Конструкция представляет листы, расположенные по бокам (вертикально и поперечно). Укомплектовано устройство газотрубным наддувом и охладителем для надувочного воздуха.

Дизель-генератор 4Д80Б

На маневровых тепловозах ЧМЭ3 изначально были установлены дизели типа К6S310DR, на смену которым, с целью увеличения работоспособности техники, пришли дизель-генераторы в модификации 4Д80Б. Агрегаты разработаны специально для данной модели тепловоза, в связи с чем процесс адаптации схем двигателя к устройству тепловоза не требует внесение корректировок в настройки тепловоза.

Дизели являются идеальными аналогами устройств мирового производства. В первую очередь выделяются своим техническим уровнем, достаточно экологичны и экономичны. Обладают высоким моторесурсом. При необходимости проведения технического обслуживания или ремонта любой сложности проблем возникнуть не должно.

4Д80Б показал себя как высоконадёжное устройство. В процессе функционирования со стандартными нагрузками и даже после капитального ремонта, дизель функционирует идеально. В комплекте имеются все необходимые запчасти, которые необходимы для осуществления монтажа систем дизель – генератора.

Дизель типа 12ЧН26/27 — это двенадцатицилиндровый V-образный агрегат мощностью 993 кВт. Работая на полной мощности коленчатый вал осуществляет 750 оборотов за минуту (300 на холостом ходу), при этом средняя скорость поршня равняется 6,75 м/с. Удельный расход топлива в условиях объекта и ISO — 201 г/кВт.ч., и 190 г/кВт.ч., соответственно.

Масса 4Д80Б составляет 22500 кг, длина 3990 мм, широта 1616 мм, высота 2840 мм. Среднее значение эффективного давления равно 0,921 мПа. Продуктивное и бесперебойное функционирование дизеля обеспечивается на протяжении длительного времени.

Дизель-генератор 1Д80Б-01

Двигателя внутреннего сгорания с генератором также устанавливаются на магистральные тепловозы 2ТЭ10. В данном случае новый дизель-генератор 1Д80Б-01 меняет старую модель дизель-генератора 10Д100М1.

Установка дизеля унифицированного ряда Д-80 (УМР-Д80) предназначена для модернизации тепловоза, благодаря которой мощность техники увеличилась до 2075 кВт. Системы двигателя и тепловоза адаптируются друг с другом без внесения правок в служебные свойства 2ТЭ10.

Данная модель дизель-генератора превосходит по техническим параметрам иные модели данной серии и является превосходным аналогом двигателей зарубежного производства. 1Д80Б-01 обладает рядом преимуществ, к которым можно отнести:

  • экономичность;
  • экологичность;
  • высокое значение моторесурса;
  • ремонтопригодность.
Читать еще:  Что такое опора двигателя задняя

Процесс разработки, доработки конструкции и наполнения двигателя позволили обеспечить его высокую надёжность во время эксплуатации и даже после капитальных ремонтных работ. На расстоянии до 200000 км дизель способен продуктивно проработать до первой переборки. До капитального ремонта устройство будут служить не меньше 1200000 км. Заводом-изготовителем предусмотрены все необходимые для соединения системы дизель-генератора и тепловоза, детали и комплектующие.

Дизель типа 16ЧН26/27 имеет 16 цилиндров, расположенных в V-образной форме. При массе 29000 кг., длине 6951 мм, широте 1930 мм и высоте 2922 мм 1Д80Б-01 расходует топливо в условиях объекта 204 г/кВт.ч. и при ISO 193 г/кВт.ч.

При максимально эффективной работе, включая всю мощность, коленчатый вал вращается с частотой в 850 оборотов в минуту, а без нагрузки 270 об/м. В среднем достигается скорость поршня в размере 9,0 м/с и эффективное давление в размере 1,176 мПа.

Дизель-генератор 1Д80Б

Двигателем внутреннего сгорания в тепловозах 2ТЭ116, функционирующих на магистральных путях, установленный изначально заводом-изготовителем, является дизель-генератор типа 1А-9ДГ. Для модернизации данных тепловозов штатные дизели меняются на новые дизель-генераторы 1Д80Б.

Системы двигатели и системы тепловоза при установке дизеля унифицированного ряда Д-80 (УМР-Д80) не требуют внесения даже малейших изменений в служебные свойства тепловоза, ведь процесс адаптации проходит идеально.

Дизель-генератор 1Д80Б по своим основным параметрам очень схож с 1Д80Б-01, но всё таки имеет некоторые технические отличия, заключающиеся в:

  • частоте вращения коленчатого вала (1000 при максимальной мощности, 350 — без нагрузок);
  • массе изделия, которое составляет 24655 кг;
  • длине — 5325 мм;
  • ширине — 1615 мм;
  • высоте — 3193 мм.

Подсоединение дизель-генератора не составит труда, ведь производитель укомплектовал устройство всеми необходимыми деталями и сборочными единицами.

1Д80Б — двигатель унифицированного мощного ряда, который благодаря своим техническим параметрам является высококачественным аналогом изделия зарубежного производства. Продуманная до деталей конструкция, надёжные и прочные комплектующие позволяют продуктивно использовать данный дизель-генератор в период эксплуатации и даже после КР.

Благодаря экономичности, экологичности, износостойкому мотору и подлежащим ремонту системам дизель-генератор 1Д80Б устойчиво популярен.

Термисторная защита электродвигателей и реле термисторной защиты двигателя

Термисторная (позисторная) защита электродвигателей

Сложность конструкции тепловых реле к пускателям электродвигателей, недостаточная надежность систем защиты на их основе, привели к созданию тепловой защиты, реагирующей непосредственно на температуру обмоток электродвигателя. При этом датчики температуры устанавливаются на обмотке двигателя. Другими словами, осуществляется непосредственный контроль измерения нагрева двигателя. Прямая защита двигателя через контроль температуры обмотки даже при тяжелейших условиях окружающей среды обеспечивает полную защиту двигателя, оснащенного температурными датчиками с положительным коэффициентом сопротивления (PTC). Температурные датчики PTC встроены в обмотки электродвигателя (укладываются в обмотку двигателя изготовителем двигателей).

Термочувствительные защитные устройства: термисторы, позисторы

В качестве датчиков температуры получили применение термисторы и позисторы (РТС – резисторы) — полупроводниковые резисторы, изменяющие свое сопротивление от температуры. Термисторы представляют собой полупроводниковые резисторы с большим отрицательным ТСК. При увеличении температуры сопротивление термистора уменьшается, что используется для схемы отключения двигателя. Для увеличения крутизны зависимости сопротивления от температуры, термисторы, наклеенные на три фазы, включаются параллельно (рисунок 1).

Рисунок 1 – Зависимость сопротивления позисторов и термисторов от температуры: а – последовательное соединение позисторов; б – параллельное соединение термисторов

Позисторы являются нелинейными резисторами с положительным ТСК. При достижении определенной температуры сопротивление позистора скачкообразно увеличивается на несколько порядков.

Для усиления этого эффекта позисторы разных фаз соединяются последовательно. Характеристика позисторов показана на рисунке.

Защита с помощью позистоpoв является более совершенной. В зависимости от класса изоляции обмоток двигателя берутся позисторы на температуру срабатывания =105, 115, 130, 145 и 160 . Эта температура называется классификационной. Позистор резко меняет сопротивление при температура за время не более 12 с. При сопротивление трёх последовательно включенных позисторов должно быть не более 1650 Ом, при температуре их сопротивление должно быть не менее 4000 Ом.

Гарантийный срок службы позисторов 20000 ч. Конструктивно позистор представляет собой диск диаметром 3.5 мм и толщиной 1 мм, покрытый кремне-органической эмалью, создающей необходимую влагостойкость и электрическую прочность изоляции.

Рассмотрим схему позисторной защиты, показанную на рисунке 2.

К контактам 1, 2 схемы (рисунок 2, а) подключаются позисторы, установленные на всех трёх фазах двигателя (рисунок 2, б). Транзисторы VТ1, VT2 включены по схеме триггера Шмидта и работают в ключевом режиме. В цепь коллектора транзистора VT3 оконечного каскада включено выходное реле К, которое подает сигнал на обмотку пускателя электродвигателя.

При нормальной температуре обмотки двигателя и связанных с ним позисторов сопротивление последних мало. Сопротивление между точками 1-2 схемы также мало, транзистор VT1 закрыт (на базе малый отрицательный потенциал), транзистор VТ2 открьт (большой потенциал). Отрицательный потенциал на коллекторе транзисторе VT3 мал, и он закрыт. При этом ток в обмотке реле К недостаточен для его срабатывания.

При нагреве обмотки двигателя сопротивление позисторов увеличивается, и при определенном значении этого сопротивления отрицательный потенциал точки 3 достигает напряжения срабатывания триггера. Релейный режим триггера обеспечивается эммитерной обратной связью (сопротивление в цепи эммитера VТ1) и коллекторной обратной связью между коллектором VT2 и базой VT1. При срабатывании триггера VТ2 закрывается, а VT3 — открывается. Срабатывает реле К, замыкая цепи сигнализации и размыкая цепь электромагнита пускателя, после чего обмотка статора отключается от напряжения сети, двигатель останавливается.

Рисунок 2 – Аппарат позисторной защиты с ручным возвратом: а – принципиальная схема; б – схема подключения к двигателю

После охлаждения двигателя его пуск возможен после нажатия кнопки «возврат», при котором триггер возвращается в начальное положение.

В современных электродвигателях позисторы защиты устанавливаются на лобовой части обмоток двигателя. В двигателях прежних разработок позисторы можно приклеивать к лобовой части обмоток.

Достоинства и недостатки термисторной (позисторной) защиты

  • Термочувствительная защита электродвигателей предпочтительней в тех случаях, когда по току невозможно определить с достаточной точностью температуру электродвигателя. Это касается, прежде всего, электродвигателей с продолжительным периодом запуска, частыми операциями включения и отключения (повторно-кратковременный режим работы) или двигателей с регулируемым числом оборотов (при помощи преобразователей частоты). Термисторная защита эффективна также при сильном загрязнении электродвигателей или выходе из строя системы принудительного охлаждения.
  • Термисторная защита эффективна также при сильном загрязнении двигателей или выходе из строя принудительного охлаждения. Следующей областью применения термисторной защиты является температурный контроль в трансформаторах, жидкостях и подшипниках для их защиты от перегрева.
  • Недостатками термисторной защиты является то, что с термисторами или позисторами выпускаются далеко не все типы электродвигателей. Это особенно касается электродвигателей отечественного производства. Термисторы и позисторы могут устанавливаться в электродвигатели только в условиях стационарных мастерских. Температурная характеристика термистора достаточно инерционна и сильно зависит от температуры окружающей среды и от условий эксплуатации самого электродвигателя.
  • Термисторная защита требует наличия специального электронного блока: термисторного устройства защиты электродвигателей, теплового или электронного реле перегрузки, в которых находятся блоки настройки и регулировки, а также выходные электромагнитные реле, служащие для отключения катушки пускателя или электромагнитного расцепителя.

Виды термисторных реле различных производителей:

Реле термисторной защиты двигателя TER-7 ELCO (Чехия)

  • контролирует температуру обмотки электродвигателя в температ. интервале, данном сопротивл. PTC термистора фиксированный настроенный уровень коммутации
  • в качестве считывающего элемента применяетсчя термистор PTC встроенный в обмотку электродвигателя его производителем, возможно использование внешнего PTC сенсора
  • функция ПАМЯТЬ — реле в случае ошибки блокируется до момента вмешательства персонала (наж. кнопки RESET)
    RESET ошибочного состояния:
    a) кнопкой на передней панели
    b) внешним контактом (на расстоянии по двум проводам)
  • функция контроля короткого замыкани или отключения сенсора , состояние нарушения сенсора указывает мигающий красный светодиодный индикатор
  • выходной контакт 2x переключ. 8 A / 250 V AC1
  • состояние превышение температуры обмотки двигателя указывает светящийся красный светодиодный индикатор
  • универсальное напряжение питания AC/ DC 24 — 240 V
  • клеммы сенсора не изолированы гальванически, но их можно замкнуть с клеммой PE без поломки устройства, в случае питания от сети должен быть подключен нейтраль на клемму A2

Реле термисторной защиты электродвигателя РТ-М01-1-15 (МЕАНДР, Россия)

  • контролирует температуру двигателей, оснащенные позисторами (термисторы с положительным температурным коэффициентом — РТС резисторы), встроенные в обмотку двигателя ( производителем).
  • коммутируемый ток 5А/250В (пиковый 16А), контакты реле 1з+1р
  • индикация рабочих состояний:
  • (напряжение питания, срабатывание реле, перегрев двигателя, КЗ датчиков)
  • напряжение питания АС 220, 100, 380 (по исполнениям)

Реле контроля температуры двигателя E3TF01 230VAC (PTC), 1 CO, TELE Серия ENYA (Австрия)

Читать еще:  Двигатель вольво d13 не заводится

  • контролируемая величина PTC (контр. температуры двигателя на повышение) от 6 PTC датчиков
  • диапазон измерения общее сопр. холодн. Реле контроля температуры двигателя G2TF02 (PTC), 2ПК (требуется модуль TR2)TELE Серия GAMMA (Австрия)

  • контролируемая величина PTC (контр. температуры двигателя на повышение) от 6 PTC датчиков
  • диапазон измерения общее сопр. холодн. Реле термисторной защиты двигателя CR-810 F&F ЕвроАвтоматика (Белоруссия)

  • контроль температуры электродвигателей, генераторов, трансформаторов и защита их от перегрева
  • датчики РТС устанавливаются в обмотках электродвигателя производителем и в комплект не входят (термисторы РТС соединенные последовательно от 1 до 6 штук)
  • напряжение питания 230V AC и 24V AC/DC
  • максимальный комутируемый ток 16А, 1 переключающий контакт
  • контроль КЗ в цепи термисторных датчиков
  • с ростом температуры электродвигателя растет сопротивление цепи термисторных датчиков, при достижении более 3000 Ом питание отключается (реле разрывает цепь питания катушки контактора), включение происходит автоматически при снижении температуры и соответсвенно сопротивления до 1800 Ом.

Реле контроля температуры двигателя MTR01, MTR02 BMR (Чехия)

  • Реле контролирует температуру обмотки электрического двигателя. Принцип действия основан на измерении сопротивления термистора, встроенного в двигатель.
  • Устройство также контролирует короткое замыкание или пропадание фазы. Реле имеет один выходной перекидной контакт на ток 8 А.
  • Модификация MTR01 24V/ MTR02 24V предназначена для напряжения питания 24 В. Остальные параметры.
  • MTR02 с гальванической изоляцией
  • Сопротивление PTC в раб. режиме 50 Ω 3,3кΩ или PTC Реле контроля температуры двигателя BTR-12EBTR Electronic Systems, «METZ CONNECT» (Германия)

  • реле термистор применяется для защиты моторов от термических перегрузок, возникающих при механических перегрузках в приводах или при использовании электродвигателей под перенапряжением. Для регистрации температуры применяется РТС = сопротивление с позитивным температурным коэффициентом, которые позиционируются в месте наибольшего нагрева.
  • выпускается с памятью ошибки и без ЗУ (запоминающее устройство)
  • напряжение питания 230V AC / 24V AC/DC
  • предельно допустимый ток контактов 6А (1 или 2 переключающих контакта)

Реле термической защиты Grundfos MS 220 C Grundfos/Ziehl (Германия)

  • Реле Grundfos MS 220C предназначено для преобразования термисторного сигнала в релейный и передачи его на пускатель в насосах с мощностью двигателя более 3.0 кВт.
  • напряжение питания AC/DC 24 — 240V (и др. в зависимости от исполнения 110,400V)
  • 1 CO, ток контактов 6А

Реле контроля температуры двигателя серии 71.91 и 71.92 Finder (Италия)

Термисторное реле определения температуры для промышленного применения.

Реле Finder термисторной защиты двигателя [71.91.8.230.0300]

  • 1 нормально разомкнутый контакт, без памяти отказов
  • Питание 24 В переменного/постоянного тока или 230 В переменного тока
  • Защита от перегрузок в соответствии с EN 60204-7-3
  • Положительная предохранительная логическая схема размыкает контакт, если значения измерений выходят за пределы приемлемого диапазона
  • Индикация состояния с помощью светодиода
  • Определение температуры с положительным температурным коэффициентом (PTC)
  • Выявление короткого замыкания с помощью PTC
  • Выявление обрыва провода с помощью PTC

Реле Finder термисторной защиты двигателя (с памятью) [71.92.8.230.0401]

  • Термисторное реле с памятью отказов
  • 2 перекидных контакта
  • Питание 24 В переменного/постоянного тока или 230 В переменного тока
  • Защита от перегрузок в соответствии с EN 60204-7-3
  • Положительная предохранительная логическая схема размыкает контакт, если значения измерений выходят за пределы приемлемого диапазона
  • Индикация состояния с помощью светодиода
  • Определение температуры с положительным температурным коэффициентом (PTC)
  • Память отказов выбирается переключателем
  • Выявление короткого замыкания с помощью PTC
  • Выявление обрыва провода с помощью PTC

Обозначение на схеме

При чтении схем важно ориентироваться в обозначении всех устройств, изображенных на них. Это позволяет обеспечивать точное подключение с соблюдением основных параметров работы электроустановки, селективности срабатывания защит и поддерживать нормальный режим электроснабжения. Изображение теплового реле на схемах определяется положениями двух нормативных документов. В соответствии с таблицей 3 ГОСТ 2.755-87 контакты данного вида оборудования изображаются следующим образом (рисунок 3):

Рис. 3. Изображение контакта термореле

В тоже время, само температурное реле имеет обозначение в соответствии с п.21 таблицы 1 ГОСТ 2.756-76, которое отображается на схеме следующим образом (см. рисунок 4):

Рис. 4. Воспринимающая часть электротеплового реле

Знание схематических изображений электротеплового реле позволит вам ориентироваться в принципиальных схемах уже действующих агрегатов. Или самостоятельно составлять и подключать оборудование через защитное приспособление.

Современное разнообразие тепловых реле охватывает довольно широкий ассортимент. Поэтому деление на виды производиться в соответствии с установленными критериями на основании п. 1.1. ГОСТ 16308-84. Так, по роду тока рабочей цепи все устройства подразделяются на две большие группы: реле переменного и постоянного тока. В зависимости от количества рабочих полюсов встречаются:

  • однополюсные – применяются для двигателей постоянного тока и других однофазных моделей;
  • двухполюсные – устанавливаются в трехфазную цепь, где контроль может осуществляться только по двум фазам;
  • трехполюсные – актуальны для мощных асинхронных агрегатов с короткозамкнутым ротором.

В зависимости от типа контактов вторичных цепей все тепловые приборы подразделяются на модели:

  • только с замыкающим контактом;
  • только с размыкающим контактом;
  • и с замыкающим, и с размыкающим контактом;
  • с переключающими;

В зависимости от способа возврата теплового реле в исходное положение существуют варианты с включением вручную или с самостоятельным возвратом. Также в моделях может реализовываться функция перевода с одного вида работы на другой.

Также существует разделение по наличию или отсутствию приспособления для компенсации температуры окружающего пространства. И модели с возможностью регулировки тока несрабатывания или с отсутствием таковой функции.

Принцип работы и электрическая схема тепловой пушки

Принцип работы достаточно прост и основывается на нагревании воздуха за счет трубчатого ТЭНа, помещённого в корпус. Вначале воздух засасывается вовнутрь прибора, где он нагревается с помощью ТЭНа, затем нагретый воздух выдувается в помещения вентилятором.
Простейшая схема электрической тепловой пушки выглядит следующим образом (Рис.1)

Схема тепловой электрической пушки

В устройство тепловой пушки включены:

  1. Два термостата (на схеме обозначены SK1, SK2);
  2. Тумблер SA1;
  3. Нагревательный элемент ЕК1;
  4. Электрический двигатель М1.

Как видно со схемы термостаты и тумблер соединены последовательно, а вся цепь замыкается на двигателе и ТЭНе. Термостат обеспечивает контроль за уровнем нагрева спирали. Также, он отвечает за автоматическое размыкание цепи после достижения необходимой температуры.

Составные части тепловой электрической пушки

Автоматика размыкания цепи организована за счет биметаллической пластинки, которая способна выгибаться в разные стороны при охлаждении или нагревании. Также, часто производители включают в общую схему чувствительный термодатчик, который контролирует, нагрев корпуса.

Если температура корпуса превышает допустимую, весь прибор отключается. Тепловые пушки имеют световую индикацию, а более сложные модели табло, на котором указывается время работы и температура в помещении.

Электродвигатель представляет собой вентилятор, обеспечивающий нагнетание воздуха на нагревательный элемент. В электрических пушках принято использовать металлические ТЭНы, очень редко материалом нагревательного элемента является стекла или керамики.

Внешние части электрической пушки

Корпус большинства видов пушек выполнен из нержавеющей стали, что сохраняет прибор от коррозии. Можно встретить и корпусы с термостойких пластмасс, достоинством таких агрегатов является легкость, но они поддаться механическим повреждениям.
Вмонтированная металлическая решетка служит защитным элементом, чтобы обезопасить человека от контакта с нагретой спиралью. А также корпус у некоторых моделей может поворачиваться относительно поддерживающей конструкции, увеличивая угол нагрева. Таким образом помещение нагревается до оптимальной температуры быстрее.

Как выбрать тепловую пушку

Тепловые пушки электрические становятся все более популярными из-за надежности, простоты эксплуатации и конструкции (Рис.2), а также теплоотдачи.

При выборе тепловой пушке главной ориентировкой для покупателя является площадь обогреваемого помещения. Существует правило согласно которому, тепловая электро пушка с минимальной мощность 100 Вт прогревает 1м2.

Понятно, что для нагрева помещения с площадью в 150 м2, минимальная мощность пушки должна составить 15 кВт. А также, следует обратить внимание на тип нагревателя. В продаже встречаются модели закрытого и открытого типа. Последние допустимо использовать только в нежилые помещения, поскольку они способны выделять продукты горения. Также, тепловые пушки могут быть портативными и стационарными.

Следует обратить внимание на материал, с которого выполнен корпус пушки. При перегревании пластмассового корпуса, можно почувствовать запах горелого. Если в помещении принципиален уровень шума на этот показатель также следует обратить внимание. Вращающиеся тепловентиляторы могут достаточно сильно шуметь, поэтому этот показатель не должен превышать 40 Дб.

Привила эксплуатации

Прибор не рекомендуется использовать в помещениях с влажность более 80%, запрещено чем-либо накрывать агрегат, что может повлечь за собой воспламенение предмета или самого прибора. Для достижения необходимой температуры следует выбрать место для размещения тепловой пушки, в ином случае воздух будет прогреваться только вблизи прибора.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector