3 фазный двигатель регулировать обороты - Авто Сфера №76
Avtosfera76.ru

Авто Сфера №76
12 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

3 фазный двигатель регулировать обороты

Электродвигатели переменного тока нашли довольно широкое применение в различных сферах нашей жизнедеятельности, в подъемно транспортном, обрабатывающем, измерительном оборудовании. Они используются для превращения электрической энергии, которая поступает от сети, в механическую энергию вращающегося вала. Чаще всего используются именно асинхронные преобразователи переменного тока. В них частота вращения ротора и статора отличаются. Между этими активными элементами обеспечивается конструктивный воздушный зазор.

И статор, и ротор имеют жесткий сердечник из электротехнической стали (наборного типа, из пластин), выступающий в роли магнитопровода, а также обмотку, которая укладывается в конструктивные пазы сердечника. Именно способ организации или укладки обмотки ротора является ключевым критерием классификации этих машин.

Двигатели с короткозамкнутым ротором (АДКР)

Здесь используется обмотка в виде алюминиевых, медных или латунных стержней, которые вставляются в пазы сердечника и с обеих сторон замыкаются дисками (кольцами). Тип соединения этих элементов зависит от мощности двигателя: для малых значений используют метод совместной отливки дисков и стержней, а для больших – раздельное изготовление с последующей сваркой между собой. Обмотка статора подключается с использованием схем «треугольника» или «звезды».

Двигатели с фазным ротором

К сети подключается трехфазная обмотка ротора, посредством контактных колец на основном валу и щеток. За основу принимается схема «звезда». На рисунке внизу представлена типичная конструкция такого двигателя.

Цифровой регулятор мощности для 3 фазного мотора переменного тока выполнен с использованием специальной микросхемы MC3PHAC от фирмы NXP Semiconductor. Она генерирует 6 ШИМ-сигналов для 3 фазного двигателя переменного тока. Блок легко совмещается с мощным 3 фазным IGBT/MOSFET ключевым приводом. Плата обеспечивает 6 ШИМ сигналов для IPM или IGBT инвертора, а также сигнал торможения. Схема работает в автономном режиме и не требует программирования и кодирования.

Схема регулятора

Органы управления

  • PR1: Потенциометр для установки ускорения
  • PR2: Потенциометр для регулировки скорости
  • SW1: Переключатель DIPX4 для установки частот 60Hz/50Hz и установки выхода активный низкий / активный высокий
  • SW2: Переключатель сброса
  • SW3: Старт / стоп мотор
  • SW4: изменить направление двигателя

Основные параметры

  • Питание драйвера 7-15 В постоянного тока
  • Потенциометр для управления скоростью двигателя
  • Частота ШИМ по умолчанию 10.582 кГц (5.291 кГц – 164 кГц)

М/с MC3PHAC — это монолитный интеллектуальный контроллер, разработанный специально для удовлетворения потребности в недорогих 3-фазных системах управления электродвигателем переменного тока с регулировкой скорости вращения. Устройство адаптируется и настраивается в зависимости от его параметров. Оно содержит все активные функции, необходимые для реализации части управления с открытым контуром. Всё это делает MC3PHAC идеально подходящей для устройств, требующих поддержки управления двигателем переменного тока.

В состав MC3PHAC входят защитные функции, состоящие из контроля напряжения шины постоянного тока и входа неисправности системы, которые немедленно отключат модуль ШИМ при обнаружении неисправности системы.

Все выходные сигналы TTL уровня. Вход для блока питания 5-15 В постоянного тока, постоянное напряжение на шине должно быть в пределах 1.75 — 4,75 вольта, DIP-переключатель предусмотрен на плате для установки под двигатели с частотой 60 или 50 Гц, перемычки помогают установить полярность выходного ШИМ-сигнала, то есть активный низкий или активный высокий уровень, что позволяет использовать эту плату в любом модуле, так как выход можно установить активный низкий или высокий. Потенциометр PR2 помогает регулировать скорость двигателя. Для изменения базовой частоты, времени отключения ШИМ, других возможных параметров — изучайте даташит. Файлы платы — в архиве

Управление скоростью. Синхронная частота электродвигателя может быть задана в режиме реального времени для любого значения от 1 Гц до 128 Гц регулировкой потенциометра PR2. Коэффициент масштабирования составляет 25,6 Гц на вольт. Обработка 24-битным цифровым фильтром для того чтобы увеличить стабильность скорости.

Управление ускорением. Ускорение двигателя может быть задано в режиме реального времени в диапазоне от 0,5 Гц/сек до 128 Гц/сек, путем регулировки потенциометра PR1. Коэффициент масштабирования составляет 25,6 Гц/секунду на вольт.

Защита. При возникновении неисправности MC3PHAC немедленно отключает ШИМ и ожидает, пока условие неисправности не будет устранено перед запуском таймера для повторного включения. В автономном режиме этот интервал времени ожидания задается на этапе инициализации путем подачи напряжения на вывод MUX_IN, в то время как вывод RETRY_TxD управляется на низком уровне. Таким образом, время повтора может быть указано от 1 до 60 секунд с коэффициентом масштабирования 12 секунд на вольт.

Контроль внешних неисправностей. Вывод FAULTIN принимает цифровой сигнал, указывающий на неисправность, обнаруженную с помощью внешних цепей мониторинга. Высокий уровень на этом входе приводит к немедленному отключению ШИМ. Как только этот вход возвращается к низкому уровню логики, таймер повтора сбоя начинает работать, и ШИМ повторно включается после достижения запрограммированного значения тайм-аута. Входной контакт 9 разъема CN3 FLTIN должен быть с высоким потенциалом.

Мониторинг целостности напряжения (входной сигнал pin 10 в cn3) в DC_BUS отслеживается на частоте 5.3 кГц (4.0 кГц, если частота ШИМ имеет значение до 15,9 кГц). В автономном режиме пороги фиксируются на 4.47 вольт (128% от номинальной), и 1,75 вольт (50% от номинальной), где номинальное значение определяется в 3,5 вольт. Как только уровень сигнала DC_BUS возвращается к значению в пределах допустимого — таймер повтора сбоя начинает работать, и ШИМ снова включается после достижения запрограммированного значения тайм-аута.

Читать еще:  Что заменило свечи в двигателе

Регенерация. Процесс экономии, с помощью которого сохраненная механическая энергия в двигателе и нагрузке переносятся обратно в привод электроники, происходит это как правило, в результате принудительного замедления. В особых случаях, когда этот процесс происходит часто (например, системы управления двигателями лифтов), он включает специальные функции, чтобы позволить этой энергии перейти обратно в сеть переменного тока. Однако для большинства недорогих приводов переменного тока эта энергия сохраняется в конденсаторе шины постоянного тока за счет увеличения ее напряжения. Если этот процесс не установлен, напряжение шины постоянного тока может подниматься до опасного уровня, что может привести к порче конденсатора шины или транзисторов в инверторе питания. MC3PHAC позволяет автоматизировать и стабилизировать этот процесс.

Резистивное торможение. DC_BUS пин-код отслеживается на 5.3 кГц (4.0 кГц, если частота ШИМ имеет значение до 15,9 кГц), и когда напряжение достигает определенного порога, RBRAKE контакт примет высокий потенциал. Этот сигнал может использоваться для управления резистивным тормозом, размещенным через конденсатор шины постоянного тока, таким образом, механическая энергия от двигателя будет рассеиваться в виде тепла в резисторе. В автономном режиме порог DC_BUS, необходимый для подтверждения сигнала RBRAKE, зафиксирован на уровне 3,85 вольта (110 % номинала), где номинал определяется как 3,5 вольта.

Выбор частоты ШИМ. У MC3PHAC имеется четырех дискретных частоты ШИМ, которые могут быть динамически изменены во время вращения электродвигателя. Этот резистор может быть потенциометром или фиксированным резистором в диапазоне, показанном в таблице. Частота ШИМ определяется подачей напряжения на контакт MUX_IN в то время как контакт ШИМ FREQ_RxD управляется низким потенциалом.

Обсудить статью РЕГУЛЯТОР МОЩНОСТИ ДЛЯ 3 ФАЗНОГО МОТОРА

Регулирование скорости двигателя с помощью изменения напряжения питания

Данный способ регулирования можно осуществить, если включить в цепь автотрансформатор, перед статором, после питающих проводов. При этом, если снижать напряжение на выходе автотрансформатора, то двигатель будет работать на пониженном напряжении. Это приведёт к снижению частоты вращения двигателя, при постоянном моменте нагрузки, а также к снижению перегрузочной способности двигателя. Это связано с тем, что при уменьшении напряжения питания, максимальный момент двигателя уменьшается в квадрат раз. Кроме того, этот момент уменьшается быстрее, чем ток в цепи ротора, а значит, растут и потери, с последующим нагревом двигателя.

Способ регулирования изменением напряжения, возможен только вниз от естественной характеристики, так как увеличивать напряжение выше номинального нельзя, потому что это может привести к большим потерям в двигателе, перегреву и выходу его из строя.

Кроме автотрансформатора, можно использовать тиристорный регулятор напряжения.

Регулирование скорости вращения изменением числа полюсов обмотки статора


Рис. 174. Схемы одной фазы трехфазной обмотки с переключением числа полюсов: а — 2 р = 4; б — 2 р =2.

Этот способ позволяет изменять скорость вращения только ступенями. Статор должен иметь одну специальную обмотку, допускающую переключение ее на две схемы по числу полюсов, или две. Для первого случая наиболее выполнимое соотношение полюсов равно двум, его обычно и выбирают.
Каждая фаза обмотки с переключением числа пар полюсов в отношении 2:1 состоит из двух частей (полуобмоток фаз) с одинаковым количеством катушечных групп в каждой части. Используется обычно двухслойная обмотка. Для переключения изменяют направление тока в половине катушек (рис. 174). Переключаемые части обмоток (полуобмотки фаз) можно соединять параллельно и последовательно. Переключения выполняют одинаково во всех фазах и одновременно.
Сопоставляя однообмоточный двигатель с переключением числа полюсов с двигателем, на статоре которого уложены две обмотки, каждая на свое число полюсов, можно отметить, что во втором случае ухудшено использование машины, так как на каждой ступени к сети подключена только одна из обмоток, размещенных на статоре. В то же время у двигателя с двумя обмотками на статоре схема переключателя полюсов проще, чем у однообмоточного двухскоростного двигателя, особенно если отношение двух скоростей не равно 2.
Применяя две обмотки, каждая с переключением полюсов в отношении 1 :2, можно получить 4 ступени скорости. Если лишь одна обмотка выполнена допускающей переключение, будет получено 3 ступени скорости.
С числом ступеней больше 4 двигатели не выполняют. Практически регулирование переключением числа полюсов применяется в двигателях с короткозамкнутым ротором, так как в обмотке типа беличьего колеса число полюсов автоматически устанавливается равным числу полюсов вращающегося поля, и не требуется каких-либо переключений. В двигателе же с фазным ротором одновременно с изменением числа полюсов на статоре должно быть изменено и число полюсов фазной обмотки ротора. Усложнение обмотки наряду с необходимостью устройства дополнительных контактных колец на роторе значительно усложняет его конструкцию, такие двигатели применяются редко.
В качестве основных вариантов двигателя с переключением полюсов можно принять два, при которых двигатель на всех ступенях скорости вращения имеет или постоянный момент, или постоянную мощность.
Сложность проектирования многоскоростных двигателей состоит в том, что на всех ступенях насыщение магнитной системы, с одной стороны, не должно превышать допустимых пределов, с другой — не быть столь малым, чтобы заметно ухудшалось использование машины. Достаточно высокими должны быть обмоточные коэффициенты, коэффициент мощности, коэффициент полезного действия, перегрузочная способность, и, если необходимо, начальный пусковой момент, наконец, на каждой ступени скорости вращения должна быть установлена номинальная мощность по условиям нагрева машины с учетом того, что на разных ступенях меняются условия охлаждения. В таблице 7 указан ряд схем, наиболее полно удовлетворяющих требованиям этой многогранной задачи проектирования.
ТАБЛИЦА 7

Среди указанных схема 1 (рис. 175, а) — единственная, в которой изменение момента согласуется с изменением скорости вращения в том смысле, что меньшей скорости соответствует меньший момент и наоборот. Эта схема рациональна для приводов вентиляторного типа.
В многоскоростных двигателях, спроектированных на базе серий А и А2, номинальная мощность на каждой ступени скорости вращения установлена по условиям допустимого превышения температуры обмотки статора и применена схема 4 таблицы 7 (рис. 175,б). При переключении скорости вращения условие постоянства момента или мощности не выдерживается, но на разных ступенях моменты отличаются друг от друга меньше, чем мощности. Поэтому двигатель с определенной степенью допущения можно рассматривать как двигатель с постоянным моментом.

Рис. 175. Схемы обмоток при переключении числа полюсов:
а — при двойном числе полюсов Y, при одинарном числе полюсов А; б —при двойном числе полюсов Д, при одинарном числе полюсов YY (двойная звезда).

Читать еще:  Mr20 двигатель на каком бензине

Способ регулирования скорости вращения переключением числа полюсов широко применяется для короткозамкнутых двигателей. Достоинство его заключается в отсутствии потерь при регулировании, недостаток способа состоит в том, что регулирование ступенчатое при ограниченном числе ступеней.

Многоскоростные двигатели применяют в следующих случаях:

  1. если рабочий процесс рационально проводить на большей скорости, пуск и остановку механизма — на меньшей (например, подъемники). Здесь основная цель — останавливать без резких толчков массы, обладающие значительной инерцией;
  2. на установках с различными скоростями рабочего режима и холостого хода (например, лесопильные рамы);
  3. в установках, скорость которых желательно менять в зависимости от технологических факторов (металлорежущие и деревообрабатывающие станки, центробежные сепараторы, вентиляторы для животноводческих и птицеводческих помещений, землечерпалки).

Схемы регуляторов оборотов асинхронного двигателя

Для двигателей повседневного предназначения легко можно выполнить необходимые расчеты, и своими руками произвести сборку устройства на полупроводниковой микросхеме. Пример схемы регулятора электродвигателя приведён ниже. Такая схема позволяет добиться контроля параметров приводной системы, затрат на техническое обслуживание, снижения потребления электричества наполовину.

Принципиальная схема регулятора оборотов вращения ЭД для повседневных нужд значительно упрощается, если применить так называемый симистор.

Обороты вращения ЭД регулируются с помощью потенциометра, определяющего фазу входного импульсного сигнала, открывающего симистор. На изображении видно, что в качестве ключей применяются два тиристора, подключённых встречно-параллельно. Тиристорный регулятор оборотов ЭД 220 В достаточно часто применяется для регулирования такой нагрузки, как диммеры, вентиляторы и нагревательная техника. От оборотов вращения асинхронного ЭД зависят технические показатели и эффективность работы двигательного оборудования.

Регулятор скорости асинхронного двигателя на микроконтроллере

  • Версия для печати

Регулятор скорости асинхронного двигателя на микроконтроллере

Сообщение #1 neoblack » 05 авг 2020, 23:20

Здравствуйте, не может никто подкинуть схему (желательно очень попроще) регулятора скорости асинхронного двигателя 60 ватт с таходатчиком? Пойдет и на анализе тока без тахо, главное чтобы поддерживал скорость на минимуме оборотов и обороты можна было регулировать с помоoью микроконтроллера ардуино, stm32. например через оптопару.
Просто пробовал схему с переменным реизистором на U2010B чето вообще не смог завести нормально, крутиться на максимальных оборотах еле-еле, даже не дошел городить схему управления контроллера.

Регулирует нормально US-52 регулятор, но там слишком много всякой електроники

Регулятор скорости асинхронного двигателя на микроконтроллере

Сообщение #2 AnSm » 05 авг 2020, 23:30

Регулятор скорости асинхронного двигателя на микроконтроллере

Сообщение #3 neoblack » 05 авг 2020, 23:51

US52 вот его схема внизу. Слишком сложна для повторения. Работает прекрасно во всем положении регулятора, регулируются обороты асинхронника от нуля до максимума. Подключен таходатчик, даже на минимуме не могу затормозить движок рукой. Простым открывание симистора регулируются обороты. Внизу фото регулятора, схема, осциллограмма открывания симистора. Можна сделать такое же попроще и с контролем регулирования скорости контроллером?

Отправлено спустя 5 минут 1 секунду:
Вот двигатель какой. И осциллограмма открывания симистора на контроллере -стандартный диммер с включением симистора и отключением его при переходе через ноль (движок работает очень хреново, очень малая регулировка скорости и вот выставил обороты небольшие, бац движое резко ускоряеться и выходит на максимум).
Чето вообще не могу понять как можна сделать вот такие острые пики отключения симистора, как на регуляторе первая картинка.

Читать еще:  Влияние смазки на работу двигателя

Регулятор скорости асинхронного двигателя на микроконтроллере

Сообщение #4 T-Duke » 06 авг 2020, 19:38

Вот ни разу не поверю, что асинхронник вменяемо регулируется этой схемой. Может Вы спутали коллекторный двигатель с асинхронным? Чтобы регулировать асинхронный двигатель, нужно регулировать частоту переменного напряжения, питающего двигатель.
Для регулировки асинхронного привода используются инверторы. Там сетевое напряжение выпрямляется в постоянное, от него питается мост инвертора. Инвертор в свою очередь превращает постоянное напряжение в переменное, но уже регулируемой частоты. Фазоимпульсный регулятор не меняет частоту напряжения питающего двигатель, он только регулирует количество энергии передаваемой в нагрузку за полупериод сетевой синусоиды. Регулировать нагреватель выйдет. Регулировать асинхронник нет.

На фото показан однофазный асинхронник. Чтобы его нормально регулировать, нужно собирать специальный двухфазный инвертор, и выбрасывать конденсатор. А тот фазоимпульсный регулятор что на фото, не пригоден для регулировки асинхронного привода. Нужны гранаты другой системы.

Регулятор скорости асинхронного двигателя на микроконтроллере

Сообщение #5 neoblack » 06 авг 2020, 22:12

Вот ссылка на видео как регулирует обороты. И схема внутри что я дал, могу вскрыть и показать. (да там редуктор, потому и макс скорость такая)
https://photos.app.goo.gl/2dbLNLvK2yedbrAX9

И на осциллограмме вот конкретно импульсы что идут на него

Отправлено спустя 3 минуты 12 секунд:
Да и вот еще одна схема для регулировки оборотов асинхронника, тот же симисторв вкл и выкл, и никаких извращений не нужно. Просто сложные чуть схемы. Мне бы с помощью контроллера как-то

Регулятор скорости асинхронного двигателя на микроконтроллере

Сообщение #6 AnSm » 06 авг 2020, 22:34

Регулятор скорости асинхронного двигателя на микроконтроллере

Сообщение #7 neoblack » 06 авг 2020, 22:46

И как объяснить регулировку оборотов асинхронника на видео? Чудеса?

И на схеме не увидели движок с кондером? и пусковую обмотку тоже не видно? там возле симистора?

Регулятор скорости асинхронного двигателя на микроконтроллере

Сообщение #8 AnSm » 06 авг 2020, 23:10

А кто вам сказал, что там асинхронник? По всем ссылкам, кроме одной, двигатель 5i60rgu стредуктором или без, является регулируемым однофазным двигателем с изменением оборотов от 90 до 1400 с не большим. Что прямо говорит о коллекторном двигателе. Лишь в одном месте не грамотные продаваны, написали что двигатель аснхронный. Ваша ссылка говорит подробно о том же, что я вам и пояснял. Название Однофазный говорит лишь о том, что двигатель питается от однофазной сети, а не о том, что двигатель асинхронный. По регулировке на видео явно коллекторный двигатель.

Отправлено спустя 10 минут 53 секунды:
Поймите, если бы было все так просто с регулировкой скорости асинхронников, никто бы и не стал изобретать частотные преобразователи.

Регулятор скорости асинхронного двигателя на микроконтроллере

Сообщение #9 anker33333 » 07 авг 2020, 12:22

это скорее всего 2-х обмоточный асинхронный с конденсатором
переключением кондёра с одной обмотки на другую меняют направление вращения ( релюхой внутри преобразователя или вовсе перепайкой проводов)
инвертора достаточно и однофазного
но при отсутствии вменяемых требований по моменту и вообще по стабильности работы и так как есть сойдёт , на обратной связи там даже не энкодер а тахогенератор у нас вроде
похожие привода стоят у нас на маркираторных машинах на транспортёрчиках
регулирование -как из ж*пы -ну в смысле непоймикак , но лазер или струйная головка сама отследит когда и где маркировать , там где нужна точность давно выкинули эти привода в помойку и заменили на
3-х фазные инвертора с обычными асинхронниками

Отправлено спустя 5 минут 58 секунд:

Типичные схемы регуляторов оборотов

На рынке сегодня есть широкий выбор регуляторов и частотных преобразователей для асинхронных двигателей. Тем не менее, для бытовых нужд подъемного или обрабатывающего оборудования вполне можно сделать расчет и сборку на микросхеме самодельного прибора на базе тиристоров или мощных транзисторов.

Ниже представлен пример схемы достаточно мощного регулятора для асинхронного двигателя. За счет чего можно добиться плавного контроля параметров его работы, снижения энергопотребления до 50%, расходов на техническое обслуживание.

Данная схема является сложной. Для бытовых нужд ее можно значительно упростить, используя в качестве рабочего элемента симистор, например, ВТ138-600. В этом случае схема будет выглядеть следующим образом:

Обороты электродвигателя будут регулироваться за счет потенциометра, который определяет фазу входного импульса, открывающего симистор.

Как можно судить из информации, представленной выше, от оборотов асинхронного двигателя зависят не только параметры его работы, но и эффективность функционирования питаемого подъемного или обрабатывающего оборудования. В торговой сети сегодня можно приобрести самые разнообразные регуляторы, но также можно совершить расчет и собрать эффективное устройство своими руками.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector