Давление наддува турбины бензинового двигателя - Авто Сфера №76
Avtosfera76.ru

Авто Сфера №76
9 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Давление наддува турбины бензинового двигателя

Устройство и принцип работы турбокомпрессора

Турбокомпрессор (турбина) – механизм, применяемый в автомобилях для принудительного нагнетания воздуха в цилиндры двигателя внутреннего сгорания. При этом привод турбины осуществляется исключительно за счет действия отработавших газов (выхлопа). Применение турбокомпрессора позволяет существенно увеличить мощность двигателя (примерно на 40%), сохраняя компактными его габаритные размеры и низкий уровень расхода топлива.

  1. Конструкция и принцип работы турбины
  2. Особенности эксплуатации турбин
  3. Виды и срок службы турбокомпрессоров

Турбокомпрессор — Турбина

Турбокомпрессор (турбина) – это устройство, увеличивающее общую мощность двигателя внутреннего сгорания, используя кинетическую энергию отработанных выхлопных газов.

Вообще-то, с технически правильной позиции, называть турбокомпрессор турбиной или турбиною, технически неверно!
Потому как: турбина + компрессор = турбокомпрессор.
Но мы не будем педантами и лишь вкратце поясним, что к чему….

Турбина – устройство, преобразующее кинетическую энергию газа в механическую силу. В турбокомпрессоре, турбиной является его «горячая» часть, через которую проходит поток горячих отработанных выхлопных газов, заставляющий вращаться вал с рабочим колесом.

Компрессор – устройство, применяемое для нагнетания потока газа, в данном случае потока воздуха. В турбокомпрессоре, компрессор является его «холодной» частью и служит для нагнетания потока воздуха в цилиндры двигателя, при помощи крыльчатки компрессора, которая вращается за счёт вращения вала с рабочим колесом турбины в «горячей» части.

Компоненты турбокомпрессора

Отработанные газы под давлением приводят в движение крыльчатку турбины, которая вращает находящуюся на том же валу крыльчатку компрессора, которая в свою очередь, нагнетает поток воздуха во впускной коллектор двигателя. Турбина, таким образом, повышает давление в смеси воздуха и топлива внутри впускной камеры двигателя. В цилиндрах нагнетаемый поток увеличивает плотность горючего заряда смеси, что приводит к сгоранию большего количества топлива и выделению большего объема газа, двигающего поршни с последующим ростом мощности двигателя.

Скорость вращения ротора обычной турбины, в рабочих режимах, варьируется в пределах 70000 – 90000 оборотов в минуту. Иногда пиковая скорость вращения может достигать 200000 и более оборотов в минуту. Например, на простых турбинах «Garrett» в условиях тестирования или ремонта, производя балансировку сердцевины (картриджа, точнее: ротора) турбокомпрессора, скорость вращения вала турбины достигает 130000 – 150000 оборотов в минуту, а у турбин «BorgWarner» (серии KP35, KP39) и «Mitsubishi (MHI)» (серии TD03, TD025) 200000 оборотов в минуту. Обычно, чем меньше размеры турбокомпрессора, тем выше скорость вращения его ротора.

Маслопровод турбокомпрессора

Высокие скорости вращения вала (ротора) вызывают сильное трение и нагрев деталей турбины. Для смазывания и охлаждения элементов турбокомпрессора применяется система смазки двигателя. Моторное масло двигателя, поступая в турбину, покрывает вал тонким слоем смазки, тем самым смазывая и охлаждая его. Такой способ смазки маслом вала, обеспечивается применением гидростатических подшипников в турбокомпрессорах. Гидростатический подшипник позволяет ротору турбины достигать высоких скоростей вращения без перегрева и трения. Система смазки и охлаждения турбины напрямую зависима от качества моторного масла, используемого в двигателе. Неисправность турбины чаще всего связана с нарушением работы системы смазки из-за применения некачественного масла.

Читать еще:  Большая температура двигателя в чем проблема

Большинство современных транспортных средств оснащаются турбокомпрессором, ввиду значительного повышения эффективности работы двигателя. Изначально, установленный на выходном тракте турбокомпрессор, на самом деле немного снижает мощность двигателя, создавая небольшое сопротивление отработанным газам и немного мешая его работе. Но, прирост мощности, после цикла работы системы турбонаддува, значительно превышает потерянную мощность. Турбонаддув в среднем обеспечивает двигателю прирост мощности в 30 – 40%. С эффективностью использования турбины не поспоришь. Двигатели, снабжённые турбиною значительно производительнее обычных двигателей, так как более эффективно расходуют топливо и позволяют повысить мощность без увеличения скорости вращения двигателя.

В использовании турбин существуют свои минусы, так сказать: побочные, негативные моменты. К примеру: практически все турбокомпрессоры обладают собственной инертностью срабатывания. От момента нажатия на педаль акселератора до эффективного прироста мощности двигателя, наблюдается временная задержка, называемая «турбо-яма». За задержкой следует резкий прирост мощности, и иногда ощутим резкий рывок двигателя. Связано это в основном с силой трения ротора, которому требуется время, чтобы набрать скорость вращения до рабочего режима работы. Эти недостатки практически сведены к нулю в турбокомпрессорах с системой изменения геометрии потока отработанных (выхлопных) газов («VNT» турбины) и в турбинах с перепускными клапанами («wastegate» турбины).

Можно обозначить основные типы автомобильных турбин – это VNT (Variable-Nozzle Turbine) турбокомпрессоры с системами изменения геометрии потока выхлопных газов при помощи соплового устройства (Nozzle Ring) и обычные турбины без систем подобных VNT. К особому типу можно отнести турбины с технологией «wastegate». Технология «wastegate» по принципу своей работы схожа с VNT системами, но в отличие от VNT, «wastegate» турбокомпрессоры не имеют соплового устройства. Турбины с «wastegate» используют особый перепускной клапан для управления уровнем потока выхлопов.

Принцип действия турбонаддува

Система турбонаддува использует энергию газов, которые образуются при сгорании топлива. Газы обеспечивают вращательные движения колеса турбинного типа, которое в свою очередь запускает компрессорное колесо, отвечающее за сжатие и нагнетание воздушной массы в систему. Далее происходит охлаждение воздуха при помощи интеркулера и подача его в цилиндры.

Очевидно, что хотя турбонаддув механически никак не связан с коленвалом двигателя, однако его работа и ее эффективность находится в прямой зависимости от скорости вращения коленчатого вала. Чем выше обороты двигателя, тем эффективнее работает турбонаддув.

Несмотря на свою практичность и эффективность, система турбонаддува имеет некоторые недостатки. Ключевым из них является появление турбоям – задержка в увеличении мощности ДВС.

Подобное явление проявляется вследствие инерционности системы – задержки в увеличении давления наддува при достаточно резком нажатии на газ, что может привести к разрыву между требуемой мощностью двигателя и производительностью турбины.

Преимущества турбонаддува:

Дополнительная «бесплатная» мощность

Принято считать, что установка дополнительной турбины на выпускном коллекторе двигателя внутреннего сгорания даст дополнительную энергию для вращения аналогичного устройства на впуске, что позволит вместо простого выброса выхлопных газов получить дополнительный источник энергии для турбонаддува.

Читать еще:  Что жужжит при выключенном двигателе

Утверждение это довольно спорное, поскольку на протяжении десятилетий автомобильные инженеры боролись за снижение сопротивления выпуска, что в свою очередь снижает внутренние потери и повышает мощность мотора. Если вмонтировать в эту систему генерирующее устройство, то мы получим существенный рост сопротивления на выходе из мотора. Таким образом, турбонаддув – это не бесплатная дополнительная энергия, уместнее использовать понятие «дешёвая дополнительная энергия».

Механика этого процесса предельно проста. Турбокомпрессор, создающий избыточное давление на впуске, состоит из двух основных элементов – турбинное и компрессорное колесо. Турбинное колесо использует энергию выхлопных газов для того, чтобы создавать крутящий момент для компрессорного, которое и сжимает воздух. Сам компрессор встраивается в контур системы охлаждения двигателя, поскольку в процессе работы его температура достигает высоких величин. Для регулирования степени наддува используется перепускной клапан, который при необходимости может пускать часть выхлопных газов в обход турбины, чтобы снизить давление внутри системы.

Оптимизация соотношения массы двигателя и его веса

Переход на технологию турбонаддува позволил отказаться от необходимости увеличения рабочего объёма и количества цилиндров для повышения мощности двигателя. Это позволяет получить хорошие показатели от небольших и, соответственно, лёгких моторов, в результате чего уменьшается и снаряженная масса автомобиля, и, как следствие, возрастает динамика разгона и сокращается тормозной путь.

Экономичность

Если сравнивать показатели удельного расхода топлива турбированного мотора и атмосферного двигателя аналогичной мощности, то разница в пользу первого будет очевидна. Это обусловлено тем, что на один рабочий цикл затрачивается меньше топлива, за счёт повышения полноты его сгорания. Фактически мы имеем обеднённую смесь, негативные факторы которой полностью компенсируются избыточным давлением воздуха.

Сравнение процессов наддува

Рис. Сравнение процессов наддува

Подобно механическим нагнетателям (с), нагнетатели (компрессоры) с волной давления имеют хорошие характеристики отклика и обеспечивают быстрый рост крутящего момента (3) при разгоне. Однако, по состоянию на настоящее время, оптимизированный турбокомпрессор с приводом от выхлопных газов (а) является, вероятно, лучшим компромиссом по критерию работоспособности и цены.

Крутящий момент и мощность двигателя зависят, помимо прочего, от среднего давления в цилиндре (среднее давление поршней или рабочее давление (компрессия)). Средние величины компрессии для дизельных двигателей малого рабочего объема с турбонаддувом (1) соответствуют этим значением для двигателей с искровым зажиганием (бензиновых) без наддува (2) и в некоторых случаях даже превышают их.

В дизельных двигателях большего рабочего объема дальнейшее увеличение среднего давления достигается путем повышения уровня наддува и уменьшения компрессии, хотя результатом этого могут стать затруднения при запуске холодного двигателя. В отношении выходной мощности на 1 литр рабочего объема двигателя дизельные двигатели уступают бензиновым двигателям из-за их меньших максимальных оборотов. Однако современные дизельные двигатели для легковых автомобилей достигают максимальных оборотов до значений 5000 об/мин.

Читать еще:  Что нужно проверять в двигателе

Втулочные и шарикоподшипниковые турбины.

Втулочные турбины были самыми распространенными в течение долгого времени, тем не менее, новые и более эффективные шарикоподшипниковые турбины используются все чаще. Шарикоподшипниковые турбины появились как результат работы Garrett Motorsport во многих гоночных сериях.

Отзывчивость турбины на дроссель в значительной степени зависит от конструкции центрального картриджа. Шарикоподшипниковые турбины Garrett обеспечивают на 15% более быстрый выход на наддув относительно их втулочных аналогов, снижая эффект турбо-ямы и приближая ощущение от турбо-мотора к атмосферному большеобъемнику.

Шарикоподшипниковые турбины также требуют значительно меньшего потока масла через картридж для смазки подшипников. Это снижает вероятность утечек масла через сальники. Такие турбины менее требовательны к качеству масла и менее склонны к закоксовке после глушения двигателя.

По материалам Garrett TurboTech.
Перевод и адаптация Oleg Coupe (TurboGarage)
При использовании материалов ссылка на источник обязательна.

Видео-обзор

МУЛЬТИМЕДИА И ОБОРУДОВАНИЕ

ПРИЯТНЫЕ И ДОСТУПНЫЕ ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ

Suzuki SX4 – обладатель современной мультимедийной системы производства компании Bosch 4 . Большой сенсорный экран с диагональю 7 дюймов и разрешением HD обрадует интуитивно понятным интерфейсом, возможностью вывода картинки с камеры заднего вида при движении задним ходом и интеграции смартфона через Apple CarPlay™ и MirrorLink™, а также с дополнительными устройствами через USB и SD.

Запуск двигателя без ключа 2 , круиз-контроль, датчики дождя и света 2 , возможности управления аудиосистемой и круиз-контролем на руле – приятные и доступные функциональные возможности.

ТЕХНОЛОГИИ ПОЛНОГО ПРИВОДА

ФИРМЕННАЯ ТЕХНОЛОГИЯ ALLGRIP SELECT ОТ СОЗДАТЕЛЯ ЛЕГЕНДАРНЫХ ВНЕДОРОЖНИКОВ

ALLGRIP SELECT – результат применения огромного опыта и экспертизы в создании полноприводных автомобилей. Интегрированное управление двигателем, трансмиссией и ESP® 1 позволяет выбрать оптимальный режим в соответствии с типом дорожного покрытия и условиями окружающей среды. Режимы трансмиссии можно быстро переключить с помощью поворотного селектора ALLGRIP на центральной консоли.

AUTO (АВТО)

В режиме AUTO (АВТО) приоритет отдаётся экономии топлива. По умолчанию система использует передний привод (2WD). Полный привод подключается автоматически при пробуксовке передних колес.

SNOW (СНЕГ)

Режим SNOW (СНЕГ) лучше всего подходит для заснеженных, грунтовых и скользких покрытий. По умолчанию используется полный привод (4WD). Работа полного привода регулируется в зависимости от угла поворота рулевого колеса и степени нажатия педали газа для увеличения тяги и курсовой устойчивости на скользких дорогах.

SPORT (СПОРТ)

Режим SPORT (СПОРТ) идеально подходит для извилистых дорог и спортивного стиля вождения. Система оптимизирует алгоритм работы ALLGRIP 4WD, двигателя и АКП для более уверенного прохождения скоростных поворотов и улучшения динамики автомобиля (переключение передач в случае АКП происходит при более высоких оборотах).

LOCK (БЛОКИРОВКА)

Режим LOCK (БЛОКИРОВКА) предназначен для высвобождения автомобиля из снега, грязи или песка. Система равномерно распределяет крутящий момент между передней и задней осями.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector