Характеристики шагового двигателя от дисковода
Сервопривод или шаговый двигатель: какова разница и что выбрать?
В качестве электропривода порталов и исполнительных узлов фрезерно-гравировальных станков с чпу и оборудования для плазменной резки с ЧПУ применяются шаговые двигатели и сервоприводы. Что лучше: шаговый двигатель или сервопривод, и в каких случаях применение того или иного электропривода экономически и технически оправданно, рассмотрим в данной статье.
Использование [ править | править код ]
В машиностроении наибольшее распространение получили высокомоментные двухфазные гибридные шаговые электродвигатели с угловым перемещением 1,8°/шаг (200 шагов/оборот) или 0,9°/шаг (400 шаг/об). Точность выставления шага определяется качеством механической обработки ротора и статора электродвигателя. Производители современных шаговых электродвигателей гарантируют точность выставления шага без нагрузки до 5 % от величины шага.
Дискретность шага создаёт существенные вибрации, которые в ряде случаев могут приводить к снижению крутящего момента и возбуждению механических резонансов в системе. Уровень вибраций удаётся снижать при использовании режима дробления шага или при увеличении количества фаз.
Режим дробления шага (микрошаг) реализуется при независимом управлении током обмоток шагового электродвигателя. Управляя соотношением токов в обмотках, можно зафиксировать ротор в промежуточном положении между шагами. Таким образом можно повысить плавность вращения ротора и добиться высокой точности позиционирования. Качество изготовления современных шаговых двигателей позволяет повысить точность позиционирования в 10—20 раз.
Шаговые двигатели стандартизованы национальной ассоциацией производителей электрооборудования [en] (NEMA) по посадочным размерам и размеру фланца: NEMA 17, NEMA 23, NEMA 34 и др. — размер фланца 42, 57, 86 и 110 мм соответственно. Шаговые электродвигатели NEMA 23 могут создавать крутящий момент до 30 кгс⋅см, NEMA 34 — до 120 кгс⋅см и до 210 кгс⋅см для двигателей с фланцем 110 мм.
Шаговые двигатели создают сравнительно высокий момент при низких скоростях вращения. Момент существенно падает при увеличении скорости вращения. Однако, динамические характеристики двигателя могут быть существенно улучшены при использовании драйверов со стабилизацией тока на основе ШИМ.
Шаговые электродвигатели применяются в приводах машин и механизмов, работающих в старт-стопном режиме, или в приводах непрерывного движения, где управляющее воздействие задаётся последовательностью электрических импульсов, например, в станках с ЧПУ. В отличие от сервоприводов, шаговые приводы позволяют получать точное позиционирование без использования обратной связи от датчиков углового положения.
Шаговые двигатели применяются в устройствах компьютерной памяти — НГМД, НЖМД, устройствах чтения оптических дисков.
Датчик поворота [ править | править код ]
Шаговые двигатели с постоянными магнитами могут использоваться в качестве датчиков угла поворота благодаря возникновению ЭДС на обмотках при вращении ротора. При этом, несмотря на удобство пользования и хорошую точность и повторяемость, необходимо учитывать, что:
- без вращения вала нет ЭДС; определить положение стоящего вала нельзя;
- возможна остановка вала в зоне неустойчивого равновесия (промежуточно между полюсами) ШД. Последующий пуск вала приведёт к тому, что, в зависимости от чувствительности компаратора, будет пропуск этого полюса, или два импульса вместо одного. В обоих случаях все дальнейшие отсчёты будут с ошибкой на один шаг. Для практически полного, но не 100%-го, устранения такого поведения необходимо применить муфту с соответствующим гистерезисом (угловым люфтом).
Пути решения проблем
Все описанные недостатки ограничивают области применения ШД. В то время, как потенциальный рынок достаточно велик и, по прогнозам экспертов, ситуация в ближайшие годы не изменится. Поэтому компании — разработчики заняты поиском новых решений существующих проблем. Такие пути уже намечены. Это:
1. Улучшение электромеханических свойств гибридного шагового двигателя.
В последнее время на рынке появились ШД с новыми конструктивными особенностями. К ним относятся двигатели с измененным воздушным зазором, измененной формой зуба и т.д. Одной из наиболее перспективных конструкций является пятифазный ШД, обеспечивающий достаточно высокую плавность хода. Однако привод на базе такого ШД существенно увеличивается в стоимости, как за счет стоимости самого двигателя, так и в связи с усложнением системы управления. При этом изменение механики не решает проблем, связанных с пропуском шагов и невысокой скоростью разгона, так как по-прежнему не контролируется текущая позиция вала двигателя.
2. Применение векторного управления.
Наиболее перспективным решением перечисленных проблем шагового привода является усовершенствование его метода управления.
Проблему пропуска шагов наиболее эффективно можно решить за счет внедрения в привод датчика позиции и использования высокопроизводительного сигнального процессора. Причем, во избежание значительного увеличения стоимости привода, возможным решением является разработка мехатронного привода на базе ШД, представляющего собой интегрированное устройство, в состав которого входит сам двигатель, система управления и датчик позиции вала. В этом случае в качестве датчика можно использовать бескорпусные ОЕМ-датчики.
При наличии двух таких компонент как сигнальный процессор и датчик позиции в одном устройстве можно отказаться от использования шаговых методов управления и построить систему управления на основе алгоритма векторного управления. Данный метод уже давно используется в сервоприводах на базе синхронных и асинхронных двигателей.
Алгоритм векторного управления основан на поддержании угла 90 градусов между текущей позицией ротора в рамках одного полюса и вектором токов в обмотках двигателя.
Как видно из графика зависимости момента от угла между текущей позицией и вектором тока (Рис.1) максимальная эффективность достигается именно при угле 90 градусов.
При этом расчет текущего угла необходимо выполнять в реальном времени с высокой частотой, так как при формировании токов вал ротора всегда стремится в позицию, заданную вектором токов.
Такой способ обеспечивает высокую эффективность управления: исключается колебание момента, развиваемого двигателем и, как следствие — вибрация; обеспечиваются высокие динамические показатели; исключается пропуск шагов.
Однако в реализации векторного управления для сервопривода шагового (СПШ) есть своя специфика. ШД имеет 50 эквивалентных пар полюсов в отличие от синхронного двигателя с 6-ю полюсами. В результате алгоритм векторного управления должен отрабатываться в процессоре с частотой свыше 20 кГц, чтобы обеспечить поддержание угла 90 градусов с приемлемой точностью на высоких скоростях вращения. Соответственно и несущая ШИМ (широтно-импульсная модуляция) сигнала имеет ту же частоту. Как показывают исследования, компромиссной является частота 40 кГц, на которой максимальная скорость вращения, допустимая системой управления, достигает 12000 об/мин. При этом, силовые ключи (MOSFET) не переходят в режим усиления и, соответственно, обеспечивают приемлемый КПД привода.
Эффективное уменьшение влияния стоп-момента на неравномерность вращения в таком приводе достигается за счет использования замкнутого регулирования токами.
При резком увеличении скорости, связанной с наличием стоп-момента, двигатель вырабатывает противо ЭДС. Происходит изменение напряжения питания, что приводит к увеличению тока, протекающего в обмотках двигателя. Контур тока, который выполняет коррекцию задания токов каждые 25 мкс, успевает зафиксировать изменения тока и внести компенсационное воздействие, позволяющее сгладить резкие рывки вала двигателя, что и приводит к улучшению плавности хода. Оставшиеся низкочастотные колебания скорости исключаются замкнутым контуром управления скоростью. В результате неравномерность вращения определяется лишь разрешающей способностью датчика скорости (Рис. 2. ).
Как видно из рисунка, колебания относительно заданной скорости составляют ± дискрету датчика обратной связи во всем диапазоне скоростей. Например, при использовании датчика с разрешением 160000 импульсов на оборот глубина регулирования достигает 15000:1, т.е. разрешение привода по скорости составит 0.1875 об/мин. При этом неравномерность вращения на 100 об/мин не превысит 0.5%.
Наличие такой системы управления позволяет отказаться от дорогих пятифазных ШД. Достаточно использовать обычный гибридный ШД, при этом все его минусы «сглаживает» электроника.
Использование замкнутого регулирования током дает еще одно немаловажное преимущество – увеличение КПД привода.
Увеличение КПД привода происходит за счет того, что задаваемые токи в обмотках двигателя соответствуют нагрузке на валу двигателя. Повышенный ток подается только при появления внешнего противодействия, в отличие от разомкнутого микрошагового способа управления, где ток в обмотки двигателя подается всегда даже при нулевом противодействующем моменте.
Сервопривод шаговый, с использованием векторного управления с замкнутым контуром тока позволяет формировать предельно допустимый электрический момент во время переходного процесса. Это позволяет добиться исключительно высокой динамики без опасения перегорания обмоток и без пропуска шагов.
Например, время выполнения реверса на 500 об/мин выполняется за 18 мс, в то время как эквивалентный по мощности шаговый привод с микрошаговым управлением выполнит данную задачу лишь за 100 мс.
Новые возможности
Помимо основного функционала, наличие на «борту» сервопривода современного сигнального процессора позволяет реализовать в рамках системы управления множество дополнительных функций, таких как:
- Программируемый логический контроллер.
- Интерполятор.
- Электронный редуктор.
- Обработка концевых датчиков.
- Контроль температуры.
- Защита от КЗ.
- Защита от пониженного и повышенного напряжения питания.
- Торможение с регулированием вырабатываемого противо ЭДС.
Наличие перечисленных функций позволяет увеличить надежность системы, снизить износостойкость оборудования, а в ряде случаев исключить внешний контроллер управления движением.
Вывод
Использование передовых методов управления делает возможным применение шаговых двигателей в современных сервосистемах наряду с сервоприводами на базе синхронных и асинхронных двигателей. В свою очередь, использование мехатронного подхода обеспечивает снижение себестоимости такого привода до приемлемых значений, что традиционно свойственно шаговым приводам.
к.т.н. Тихонов А.О.
Руководитель отдела исследований
и разработок компании «Сервотехника»,
Цывинский М.М.
Инженер отдела исследований
и разработок компании «Сервотехника»
Максимальный крутящий момент — 500 кг*см
Питание — сеть 220В (АС)
Режимы работы — микрошаг до 1/512
Функции подавления резонанса и вибраций
Купить шаговый привод в нашей компании можно, сделав заказ через «Корзину товаров» либо позвонив нам по любому из телефонов, которые указаны у нас на сайте. Также Вы можете написать нам письмо на электронный адрес отдела продаж — sales@npoatom.ru.
Тел: +7 (812) 716-28-88
Факс: +7 (812) 622-05-40
§ 7.2. Особенности шагового привода САУ
Шаговый привод позволяет в разомкнутых системах реализовать управляющие функции с большой точностью. Если обеспечена работа привода без потери хотя бы одного импульса (шага), то суммарная ошибка составляет не более половины шага и не накапливается. В САУ с цифровым вычислительным устройством реализация требуемых управляющих воздействий также связана с разработкой и внедрением шагового привода. В этом случае дискретный принцип управления доводится до логического конца. Реализация командных сигналов может осуществляться без потери информации.
Параметры шагового привода практически не зависят от колебаний напряжения питания, от внешних условий, технологического разброса конструктивных параметров и от колебаний нагрузки. Эти факторы для правильно спроектированного шагового привода могут изменять ошибку лишь в пределах шага.
Однако, применение шагового привода в САУ имеет существенные особенности.
Шаговый привод является нелинейной системой. Скорость шагового двигателя постоянна и определяется частотой следования или периодом импульсов и шагом aш, т.е.
[град/сек].
Если между шаговым двигателем и органом управления имеется редуктор с передаточным числом iред=a/d, то
.
Сопряжение шагового двигателя с ЦВУ требует специальной схемы с нелинейными преобразователями. Шаговый привод в общем случае должен включать (кроме ШД) блок управления ШД, блок преобразования цифрового кода в число-импульсный, а также разностное звено. Последнее вызвано тем, что шаговый привод «запоминает» предыдущий сигнал и имеет место в обычных непрерывных приводах (с обратной связью). Шаговый привод имеет «двойную дискретность»: он работает в режиме частоты fк (периода Тк) квантования и частоты fи (периода Ти) следования импульсов.
Если в ЦВУ не предусмотрено дополнительное запоминающее (ограничивающее) устройство, то в связи с ограничением скорости указанная выше точность (отсутствие потери информации) может быть достигнута лишь в САУ с ограниченными по скорости командными сигналами. В противном случае происходит «переполнение» канала импульсами. Окончательная отработка сигнала оказывается неопределенной. Отмеченное ограничение для синусоидального сигнала вида
.
Если уровень сигнала nу на выходе ЦВУ и a связаны соотношением
a=Куnу или и
, то ограничение скорости командного сигнала определится соотношением
.
8. Вывод
Сервопривод и шаговый двигатель не являются конкурентами, а каждый занимает свою определенную нишу. Сравним их на основе рынка станков с ЧПУ. Применение шаговых двигателей полностью оправданно для применения в недорогих станках с ЧПУ (в ценовой категории до 10—12 тыс. USD), предназначенных для обработки дерева, пластиков, ДСП, МДФ, легких металлов и других материалов средней скорости.Применение высококачественных сервоприводов необходимо в высокопроизводительном оборудовании, где главным критерием является производительность. Единственный «недостаток» хорошего сервопривода – это его высокая стоимость. К примеру, станок ATS-760 на шаговых приводах стоит 11 000 $, а эта же модель, но на сервоприводах стоит 17 500 $. Однако возможности получения высокостабильного или точного управления, широкий диапазон регулирования скорости, высокая помехоустойчивость, малые габариты и вес часто являются решающими факторами их применения. Добившись одинаковых качеств от сервопривода и шагового их стоимости станут соизмеримыми при однозначном лидерстве сервопривода.
Шаговые двигатели (также называемые шаговые двигатели) представляют собой электронные двигатели, которые предлагают точный контроль вращения. Шаговые двигатели отличаются высокой точностью (в среднем шаговый двигатель может превратиться в 0,9 до 1,8 градусов в каждую сторону) и в относительно высокой скорости вращения.
Шаговые двигатели могут быть найдены в различных типах аппаратных компонентов: принтеры (головка принтера перемещается влево и вправо с помощью шагового двигателя), сканеры, компьютерные жесткие диски, и так далее.
Демонстрация шагового двигателя
В этом видео вы можете увидеть короткая демонстрация возможностей движение шаговым двигателем. Обратите внимание на точную регулировку скорости и направления — это достигается за счет способности двигатели для перемещения в очень малых шагов.
Характеристики и преимущества шаговых двигателей
Есть несколько характеристик шаговых двигателей, которые сделали их привода выбора в большом числе приложений:
- Устройство может работать как в открытом цикле с точностью позиционирования + -1 шаг. Таким образом, чтобы вращаться в определенном угловом расстоянии, двигатель может быть приказано повернуть определенное количество шагов и механический элемент связан с валом будет двигаться требуемое расстояние.
- Шаговые двигатели обладают высокой крутящий момент на малых угловых скоростей. Это полезно для ускорения полезную нагрузку до скорости.
- Шаговые двигатели имеют высокую удерживающий момент-они имеют свойство быть «самостоятельной блокировки», когда ротор находится на стоянке.
- Шаговые двигатели непосредственно совместим с цифровыми методами контроля, и может быть легко сопряжен с цифровыми Шаг Направление контроллер, микропроцессор или компьютер.
- Шаговые двигатели демонстрируют великолепную точность позиционирования, а тем более важно, ошибки не являются кумулятивными.
- Двигатель конструкция проста и надежная. Есть правило, только два подшипника и двигателя в целом имеет длительную необслуживаемые жизни. По этой причине, это экономически эффективным приводом.
Многие из этих преимущества делают двигатель шаговый полезно в некоторых типах роботов или машин. Разница в цене Серводвигатели также дает шаговых двигателей преимущество.
Недостатки шаговых двигателей
Основным недостатком шаговые двигатели разомкнутой операции — отсутствие обратной связи на должность двигателя (сигнал обратной связи) и его скорость (скорость обратной связи). Этот недостаток имеет критическое влияние на способность достигать высокой точности, и это снижает общий «безопасности» системы.
Как шагового двигателя построены?
Шаговые двигатели имеют много катушки помещены в круг форму. Когда ток проходит через одну из катушек, она становится магнитных (электромагнитных принцип) и, следовательно, перемещает вал двигателя, чтобы это направление. Например анимации:
Типы шаговых двигателей
Существуют два основных вида шаговых двигателей: униполярный и биполярный. Разница между двумя видами заключается в способе электромагнитов связаны между собой. Преимущество однополярного двигатели их упрощенному контролю, но, с другой стороны, их крутящего момента (силы) меньше, чем у биполярного motors.The преимущество биполярных двигателей больше крутящего момента для того же размера двигателя, но с другой стороны более сложные схемы управления необходимо, тот, который может изменить направление тока в каждом шаге.
Существуют гибридные двигатели, которые могут работать как в униполярных и биполярных режимов, с помощью проводов двигателя по-разному.
Управление шагового двигателя
В отличие от регулярных двигатели постоянного тока, управления шаговых двигателей является гораздо более сложным. Здесь Есть не два провода, которые должны быть подключены к источнику питания для того, чтобы спина двигателя. Для того чтобы перейти двигателя в определенном направлении, Stepping последовательности должен быть сформирован. Степпинг последовательность управляемой коммутации обмоток двигателей. Когда катушка, ток течет через катушки провода, и это становится электромагнита. Затем глава двигателя в настоящее время намагниченных до катушки, и движение будет создан.
Пошаговое Последовательности
Есть 4 вида активизации последовательности: Полный Stepping (также называемый пошагового, Double Stepping, Half степпинг, и Micro степпинг.
Управление шагового двигателя с помощью «пошаговое» степпинг метод
Это самый основной метод — включение одного электромагнита каждый раз.
Шаг номер | Катушка 1 | Катушка 2 | Катушка 3 | Катушка 4 |
1 | На | От | От | От |
2 | От | На | От | От |
3 | От | От | На | От |
4 | От | От | От | На |
Эта последовательность требует наименьшего количества энергии и генерирует гладкую движения.
Управление шаговым двигателем с помощью «Дважды Шаг» степпинг метод
В этом методе две катушки включены одновременно.
מספר צעד | Катушка 1 | Катушка 2 | Катушка 3 | Катушка 4 |
1 | На | На | От | От |
2 | От | На | На | От |
3 | От | От | На | На |
4 | На | От | От | На |
Этот метод не создает плавное движение, как и предыдущий метод, и он требует удвоить текущий, но и как вернуть его порождает двойные крутящего момента.
Управление шаговым двигателем с помощью «Half-Шаг» степпинг метод
מספר צעד | Катушка 1 | Катушка 2 | Катушка 3 | Катушка 4 |
1 | На | От | От | От |
2 | На | На | От | От |
3 | От | На | От | От |
4 | От | На | На | От |
5 | От | От | На | От |
6 | От | От | На | На |
7 | От | От | От | На |
8 | На | От | От | На |
Этот метод двойников Основная погрешность (в градусах) двигатель может двигаться. Например, является ли двигатель может двигаться в 1,8 градуса за каждый шаг, чем при использовании Half-Stepping можно двигать мотор в 0,9 градуса / шаг. Недостатком в этом способе управления является то, что в половине последовательности, дважды тока требуется (когда две катушки находятся на вместо одной).
Строительство шагового двигателя Контроллер цепи
Самый простой способ для управления шаговым двигателем использует Шаг / Направление контроллера. Такой контроллер получает только два входа — нужное направление вращения (1 = по часовой стрелке, 0 = против часовой стрелки), а также указание о том, чтобы шаг или остаться в текущей позиции (шаг = 1, шаг = 0, соответственно). Сам контроллер генерирует активизации последовательности, как описано в предыдущем разделе.
Контроллер использует мощные транзисторы MOSFET для переключения тока в катушках.
Контроллер имеет 5 входов и 6 выходов:
- 2 входа для логики источник напряжения (5 В, земля)
- 2 входа для источника напряжения двигателей (до 50V 10ampere, земля)
- 2 входа для контроля шага и направления
- 5 выходов для подключения шаговых двигателей
Электронная схема Схема для шагового двигателя Контроллер цепи
CAD-модель
Здесь вы можете увидеть простой компьютер CAD модель контроллера — для этого используется простой микроконтроллер, который генерирует последовательность активизации и 4 мощных транзисторов MOSTFET.